The pair coupled cluster doubles (pCCD) method (where the excitation manifold is restricted to electron pairs) has a series of interesting features. Among others, it provides ground-state energies very close to what is obtained with doubly occupied configuration interaction (DOCI), but with a polynomial cost (compared with the exponential cost of the latter). Here, we address whether this similarity holds for excited states by exploring the symmetric dissociation of the linear H 4 molecule. When ground-state Hartree−Fock (HF) orbitals are employed, pCCD and DOCI excited-state energies do not match, a feature that is assigned to the poor HF reference. In contrast, by optimizing the orbitals at the pCCD level (oo-pCCD) specifically for each excited state, the discrepancies between pCCD and DOCI decrease by 1 or 2 orders of magnitude. Therefore, the pCCD and DOCI methodologies still provide comparable energies for excited states, but only if suitable, state-specific orbitals are adopted. We also assessed whether a pCCD approach could be used to directly target doubly excited states, without having to resort to the equation-of-motion (EOM) formalism. In our Δoo-pCCD model, excitation energies are extracted from the energy difference between separate oo-pCCD calculations for the ground state and the targeted excited state. For a set comprising the doubly excited states of CH + , BH, nitroxyl, nitrosomethane, and formaldehyde, we found that Δoo-pCCD provides quite accurate excitation energies, with root-mean-square deviations (with respect to full configuration interaction results) lower than those of CC3 and comparable to those of EOM-CCSDT, two methods with a much higher computational cost.
We report on the shape resonance spectra of uracil, 5-fluorouracil, and 5-chlorouracil, as obtained from fixed-nuclei elastic scattering calculations performed with the Schwinger multichannel method with pseudopotentials. Our results are in good agreement with the available electron transmission spectroscopy data, and support the existence of three π∗ resonances in uracil and 5-fluorouracil. As expected, the anion states are more stable in the substituted molecules than in uracil. Since the stabilization is stronger in 5-chlorouracil, the lowest π∗ resonance in this system becomes a bound anion state. The present results also support the existence of a low-lying σCCl (*) shape resonance in 5-chlorouracil. Exploratory calculations performed at selected C-Cl bond lengths suggest that the σCCl (*) resonance could couple to the two lowest π∗ states, giving rise to a very rich dissociation dynamics. These facts would be compatible with the complex branching of the dissociative electron attachment cross sections, even though we cannot discuss any details of the vibration dynamics based only on the present fixed-nuclei results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.