Cancer cells share several metabolic traits, including aerobic production of lactate from glucose (Warburg effect), extensive glutamine utilization and impaired mitochondrial electron flow. It is still unclear how these metabolic rearrangements, which may involve different molecular events in different cells, contribute to a selective advantage for cancer cell proliferation. To ascertain which metabolic pathways are used to convert glucose and glutamine to balanced energy and biomass production, we performed systematic constraint-based simulations of a model of human central metabolism. Sampling of the feasible flux space allowed us to obtain a large number of randomly mutated cells simulated at different glutamine and glucose uptake rates. We observed that, in the limited subset of proliferating cells, most displayed fermentation of glucose to lactate in the presence of oxygen. At high utilization rates of glutamine, oxidative utilization of glucose was decreased, while the production of lactate from glutamine was enhanced. This emergent phenotype was observed only when the available carbon exceeded the amount that could be fully oxidized by the available oxygen. Under the latter conditions, standard Flux Balance Analysis indicated that: this metabolic pattern is optimal to maximize biomass and ATP production; it requires the activity of a branched TCA cycle, in which glutamine-dependent reductive carboxylation cooperates to the production of lipids and proteins; it is sustained by a variety of redox-controlled metabolic reactions. In a K-ras transformed cell line we experimentally assessed glutamine-induced metabolic changes. We validated computational results through an extension of Flux Balance Analysis that allows prediction of metabolite variations. Taken together these findings offer new understanding of the logic of the metabolic reprogramming that underlies cancer cell growth.
In the present study, we evidence how in breast cancer cells low doses of Taxol for 18 h determined the upregulation of p53 and p21 waf expression concomitantly with a decrease of the anti-apoptotic Bcl-2. P53 and its gene product, the mdm2 protein, in treated cells exhibits a prevalent nuclear compartmentalization, thus potentiating p53 transactivatory properties. Indeed, the most important finding of this study consists with the evidence that Taxol at lower concentrations is able to produce the activation of p21 promoter via p53. Prolonged exposure of MCF-7 cells to Taxol (48 h) resulted in an increased co-association between p21 and PCNA compared to control and this well fits with the simultaneous block of cell cycle into the G2/M phase.
The expression of estrogen receptor alpha (ERa) is generally associated with a less invasive and aggressive phenotype in breast carcinoma. In an attempt to understand the role of ERa in regulating breast cancer cells invasiveness, we have demonstrated that cell adhesion on fibronectin (Fn) and type IV Collagen (Col) induces ERamediated transcription and reduces cell migration in MCF-7 and in MDA-MB-231 cell lines expressing ERa. Analysis of deleted mutants of ERa indicates that the transcriptional activation function (AF)-1 is required for ERa-mediated transcription as well as for the inhibition of cell migration induced by cell adhesion on extracellular matrix (ECM) proteins. In addition, the nuclear localization signal region and some serine residues in the AF-1 of the ERa are both required for the regulation of cell invasiveness as we have observed in HeLa cells. It is worth noting that c-Src activation is coincident with adhesion of cells to ECM proteins and that the inhibition of c-Src activity by PP2 or the expression of a dominant-negative c-Src abolishes ERa-mediated transcription and partially reverts the inhibition of cell invasiveness in ERa-positive cancer cells. These findings address the integrated role of ECM proteins and ERa in influencing breast cancer cell motility through a mechanism that involves c-Src and seems not to be related to a specific cell type.
Edited by Vladimir SkulachevKeywords: Bergapten Cell survival Apoptosis p53 p21/PCNA a b s t r a c tIn this study we have reported that bergapten (B) and bergapten plus UV (PUVA) are able to significantly affect MCF-7, ZR-75 and SKBR-3 breast cancer cell proliferations.B induced a lowering of PI3K/AKT survival signal in MCF-7 cells even in presence of IGF-I stimulation. Furthermore, B and in a higher extent, PUVA up-regulated the p53 mRNA and the protein content. An increased co-association between p21 WAF and proliferating cell nuclear antigen (PCNA) has been observed in PUVA-treated MCF-7 cells, thus inhibiting DNA replication. These results highlight how B, and its photoactivated compound, exert antiproliferative effects and induce apoptotic responses in breast cancer cells.
Oncogenic K-ras is capable to control tumor growth and progression by rewiring cancer metabolism. In vitro NIH-Ras cells convert glucose to lactate and use glutamine to sustain anabolic processes, but their in vivo environmental adaptation and multiple metabolic pathways activation ability is poorly understood. Here, we show that NIH-Ras cancer cells and tumors are able to coordinate nutrient utilization to support aggressive cell proliferation and survival. Using PET imaging and metabolomics-mass spectrometry, we identified the activation of multiple metabolic pathways such as: glycolysis, autophagy recycling mechanism, glutamine and serine/glycine metabolism, both under physiological and under stress conditions. Finally, differential responses between in vitro and in vivo systems emphasize the advantageous and uncontrolled nature of the in vivo environment, which has a pivotal role in controlling the responses to therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.