In the modern automotive industry, the maintenance of the vehicle during its life cycle is increasing in importance due to both economical and environmental considerations. A new frontier is the reparation of large parts, originally made by fusion, by the addition of material. The standard technique in the field is the use of TIG welding, but in the last few years Cold Dynamic Gas Spray (CDGS) has started to show many promises in supplanting TIG repairs. The main advantage of CDGS is the absence of thermal stresses in the repaired zone with the elimination of thermal distension treatment of the part. In this paper we study the use of CDGS to repair wear damage on a commercial aluminium engine block in comparison with the standard repair procedure with TIG. The result obtained shows that CDGS is an effective technology for industrial-level repair.
The influence of the dynamic behaviour of the machine tool/workpiece system on the surface accuracy plays an important role in finish machining. In particular, the machine tool/workpiece dynamics determines the topography of the machined surface, which is crucial in determining the quality and performance of a mechanical part. A model to predict the dynamic effects of the cutting process in turning, as part of a machining simulation framework, is presented in this paper. Thermally, kinematically and dynamically induced errors can be easily implemented into the proposed model. Finally, several examples of the use of this model under different turning conditions are presented and compared to typical machined surfaces. The proposed model can effectively compute the roughness, form and dimensional accuracy of a turned surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.