Summary A new class of dependent random measures which we call compound random measures is proposed and the use of normalized versions of these random measures as priors in Bayesian non‐parametric mixture models is considered. Their tractability allows the properties of both compound random measures and normalized compound random measures to be derived. In particular, we show how compound random measures can be constructed with gamma, σ‐stable and generalized gamma process marginals. We also derive several forms of the Laplace exponent and characterize dependence through both the Lévy copula and the correlation function. An augmented Pólya urn scheme sampler and a slice sampler are described for posterior inference when a normalized compound random measure is used as the mixing measure in a non‐parametric mixture model and a data example is discussed.
We propose a new class of interacting Markov chain Monte Carlo (MCMC) algorithms designed for increasing the efficiency of a modified multiple-try Metropolis (MTM) algorithm. The extension with respect to the existing MCMC literature is twofold. The sampler proposed extends the basic MTM algorithm by allowing different proposal distributions in the multiple-try generation step. We exploit the structure of the MTM algorithm with different proposal distributions to naturally introduce an interacting MTM mechanism (IMTM) that expands the class of population Monte Carlo methods. We show the validity of the algorithm and discuss the choice of the selection weights and of the different proposals. We provide numerical studies which show that the new algorithm can perform better than the basic MTM algorithm and that the interaction mechanism allows the IMTM to efficiently explore the state space.
In this paper the theory of species sampling sequences is linked to the theory of conditionally identically distributed sequences in order to enlarge the set of species sampling sequences which are mathematically tractable. The conditional identity in distribution (see Berti, Pratelli and Rigo (2004)) is a new type of dependence for random variables, which generalizes the well-known notion of exchangeability. In this paper a class of random sequences, called generalized species sampling sequences, is defined and a condition to have conditional identity in distribution is given. Moreover, two types of generalized species sampling sequence that are conditionally identically distributed are introduced and studied: the generalized Poisson-Dirichlet sequence and the generalized Ottawa sequence. Some examples are discussed.
a b s t r a c tThe definition of vectors of dependent random probability measures is a topic of interest in applications to Bayesian statistics. They represent dependent nonparametric prior distributions that are useful for modelling observables for which specific covariate values are known. In this paper we propose a vector of two-parameter Poisson-Dirichlet processes. It is well-known that each component can be obtained by resorting to a change of measure of a σ -stable process. Thus dependence is achieved by applying a Lévy copula to the marginal intensities. In a two-sample problem, we determine the corresponding partition probability function which turns out to be partially exchangeable. Moreover, we evaluate predictive and posterior distributions.
Multiple time series data may exhibit clustering over time and the clustering effect may change across different series. This paper is motivated by the Bayesian non-parametric modelling of the dependence between clustering effects in multiple time series analysis. We follow a Dirichlet process mixture approach and define a new class of multivariate dependent Pitman-Yor processes (DPY). The proposed DPY are represented in terms of a vector of stickbreaking processes which determines dependent clustering structures in the time series. We follow a hierarchical specification of the DPY base measure to accounts for various degrees of information pooling across the series. We discuss some theoretical properties of the DPY and use them to define Bayesian non-parametric repeated measurement and vector autoregressive models. We provide efficient Monte Carlo Markov Chain algorithms for posterior computation of the proposed models and illustrate the effectiveness of the method with a simulation study and an application to the United States and the European Union business cycles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.