This paper presents the Multiphysics Analysis of a High-Power Microwave Window for a Ka-Band Klystron providing 16MW of peak power. After the optimization of the electromagnetic performances, we analyze the effect of RF heating effect and the stress of the pressure on the window. We also analyze the multipactor effect, that is a common cause of window failure. Using such approach, it is possible to realize a virtual prototype capable to represent in a complete way the real prototype to be manufactured.
In the framework of the Compact Light XLS project [1], a Ka-band linearizer with electric field ranging from 100 to 150 MV/m is requested [2, 3, 4]. In order to feed this structure, a proper Ka-band high power klystron amplifier with a high efficiency is needed. This paper reports a possible solution for a klystron amplifier operating on the TM010 mode at 36 GHz, the third harmonic of the 12 GHz linac frequency, with an efficiency of 44% and 10.6 MW radiofrequency output power. We discuss also here the high-power DC gun with the related magnetic focusing system, the RF beam dynamics and finally the multiphysics analysis of a high-power microwave window for a Ka-band klystron providing 16 MW of peak power.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.