BackgroundThe adipose tissue is an endocrine regulator and a risk factor for atherosclerosis and cardiovascular disease when by excessive accumulation induces obesity. Although the adipose tissue is also a reservoir for stem cells (ASC) their function and “stemcellness” has been questioned. Our aim was to investigate the mechanisms by which obesity affects subcutaneous white adipose tissue (WAT) stem cells.ResultsTranscriptomics, in silico analysis, real-time polymerase chain reaction (PCR) and western blots were performed on isolated stem cells from subcutaneous abdominal WAT of morbidly obese patients (ASCmo) and of non-obese individuals (ASCn). ASCmo and ASCn gene expression clustered separately from each other. ASCmo showed downregulation of “stemness” genes and upregulation of adipogenic and inflammatory genes with respect to ASCn. Moreover, the application of bioinformatics and Ingenuity Pathway Analysis (IPA) showed that the transcription factor Smad3 was tentatively affected in obese ASCmo. Validation of this target confirmed a significantly reduced Smad3 nuclear translocation in the isolated ASCmo.ConclusionsThe transcriptomic profile of the stem cells reservoir in obese subcutaneous WAT is highly modified with significant changes in genes regulating stemcellness, lineage commitment and inflammation. In addition to body mass index, cardiovascular risk factor clustering further affect the ASC transcriptomic profile inducing loss of multipotency and, hence, capacity for tissue repair. In summary, the stem cells in the subcutaneous WAT niche of obese patients are already committed to adipocyte differentiation and show an upregulated inflammatory gene expression associated to their loss of stemcellness.
It has been demonstrated that the adipose tissue, a highly functional metabolic tissue, is a reservoir of mesenchymal stem cells. The potential use of adipose-derived stem cells (ADSCs) from white adipose tissue (WAT) for organ repair and regeneration has been considered because of their obvious benefits in terms of accessibility and quantity of available sample. However, the functional capability of ADSCs from subjects with different adiposity has not been investigated. It has been our hypothesis that ADSCs from adipose tissue of patients with metabolic syndrome and high adiposity may be functionally impaired. We report that subcutaneous WAT stromal vascular fraction (SVF) from nonobese individuals had a significantly higher number of CD90+ cells than SVF from obese patients. The isolated ADSCs from WAT of obese patients had reduced differentiation potential and were less proangiogenic. Therefore, ADSCs in adipose tissue of obese patients have lower capacity for spontaneous or therapeutic repair than ADSCs from nonobese metabolically normal individuals.
The application of Taylor's concept about body angiosomes, referred to tissue transfers, has meant that the development of the perforator flaps and muscles is no longer needed as a carrier of skin flap vascularity. In this paper, we revise 59 lower limb reconstructions with local and free perforator flaps performed in the last 5 years, and a basic reconstructive algorithm is also suggested to help with the management of the lower limb soft tissue reconstruction with perforator flaps. The advantages of the perforator flaps are (1) muscles and their function are preserved; (2) the main vascular trunks are spared; (3) it is possible to make a more specific reconstruction, replacing "like with like" (even performing compound or chimeric flaps); (4) the donor site can often be closed primarily; (5) the general morbidity is reduced; (6) a better cosmetic result can be achieved.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.