We present a new approach to search for a subsurface ocean within Ganymede through observations and modeling of the dynamics of its auroral ovals. The locations of the auroral ovals oscillate due to Jupiter's time-varying magnetospheric field seen in the rest frame of Ganymede. If an electrically conductive ocean is present, the external time-varying magnetic field is reduced due to induction within the ocean and the oscillation amplitude of the ovals decreases. Hubble Space Telescope (HST) observations show that the locations of the ovals oscillate on average by 2.0• ± 1.3 • . Our model calculations predict a significantly stronger oscillation by 5.8Because the ocean and the no-ocean hypotheses cannot be separated by simple visual inspection of individual HST images, we apply a statistical analysis including a Monte Carlo test to also address the uncertainty caused by the patchiness of observed emissions. The observations require a minimum electrical conductivity of 0.09 S/m for an ocean assumed to be located between 150 km and 250 km depth or alternatively a maximum depth of the top of the ocean at 330 km. Our analysis implies that Ganymede's dynamo possesses an outstandingly low quadrupole-to-dipole moment ratio. The new technique applied here is suited to probe the interior of other planetary bodies by monitoring their auroral response to time-varying magnetic fields.
We study the morphology of Ganymede's FUV aurora by analyzing spectral images obtained over the past two decades by the Space Telescope Imaging Spectrograph on board the Hubble Space Telescope. The observations cover the eastern and western elongation as well as various magnetic latitudes of Ganymede within the Jovian plasma sheet. We find both asymmetries in the spatial distribution of auroral brightness on the observed moon disk and temporal variation correlated to Ganymede's changing magnetic latitude. The total disk brightness is on average 1.42 ± 0.07 times brighter on the leading side (95.4 ± 2.1 R) than on the trailing side (67.2 ± 2.9 R). The brightness ratio of the sub‐Jovian hemisphere to the anti‐Jovian hemisphere is 1.81 ± 0.06 on the leading side and 1.41 ± 0.14 on the trailing side, respectively. Inside the Jovian current sheet, the brightness of the auroral ovals increases by a factor of 1.45 ± 0.02 on the leading side and decreases by a factor of 0.80 ± 0.02 on the trailing side. At the current sheet center, the auroral ovals shift 4.1° ± 0.7°latitude toward Ganymede's planetographic equator on the leading side and 2.9° ± 1.5° toward the poles on the trailing side. Both effects, the variation of brightness and the movement of the ovals are correlated to a stronger interaction of Jupiter's magnetospheric plasma with Ganymede's minimagnetosphere inside the current sheet. Finally, we calculate the latitudinal difference of the northern and southern ovals from Ganymede's magnetic equator. The result suggests a farther westward orientation of Ganymede's dipole magnetic moment at approximately 47° + 58°/−43°west longitude compared to previous estimates.
In Alzheimer's disease (AD), hippocampus-dependent memories underlie an extensive decline. The neuronal ensemble encoding a memory, termed engram, is partly recapitulated during memory recall. Artificial activation of an engram can restore memory in a mouse model of early AD, but its fate and the factors that render the engram nonfunctional are yet to be revealed. Here we used repeated two-photon in vivo imaging in fosGFP transgenic mice that performed a hippocampus-dependent memory task. We found that the partial reactivation of the CA1 engram during recall is preserved under AD-like conditions. However, we identified a novelty-like ensemble that interfered with the engram and thus compromised recall. Mimicking a novelty-like ensemble in healthy mice was sufficient to affect memory recall. In turn, reducing the novelty-like signal rescued the recall impairment under AD-like conditions. These findings suggest a novel mechanistic process that contributes to the deterioration of memories in AD.
Sensory perception is modulated in a top-down fashion by higher brain regions to regulate the strength of its own input resulting in the adaptation of behavioral responses. In olfactory perception, the horizontal diagonal band of broca (HDB), embedded in the basal forebrain modulates olfactory information processing by recruiting olfactory bulb (OB) interneuron activity to shape excitatory OB output. Currently, little is known about how specific HDB to OB top down signaling affects complex olfactory-mediated behaviors. Here we show that the olfactory bulb is strongly and differentially innervated by HDB projections. HDB-silencing via tetanus toxin lead to reduced odor-evoked Ca2+-responses in glomeruli of the main OB, underscoring the HDB’s role in odor response modulation. Furthermore, selective, light-mediated silencing of only HDB to OB afferents completely prevented olfactory-mediated habituation and discrimination behaviors. Notably, also social habituation and discrimination behaviors were affected. Here we provide evidence for a novel tri-synaptic paraventricular nucleus (PVN)-HDB-OB axis responsible for modulating these types of behavior. Thus, HDB to OB projections constitute a central top-down pathway for olfactory-mediated habituation and discrimination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.