EosFit7-GUI is a full graphical user interface designed to simplify the analysis of thermal expansion and equations of state (EoSs). The software allows users to easily perform least-squares fitting of EoS parameters to diffraction data collected as a function of varying pressure, temperature or both. It has been especially designed to allow rapid graphical evaluation of both parametric data and the EoS fitted to the data, making it useful both for data analysis and for teaching.
International audienceThe effects of dissolved HO on the electrical conductivity and its anisotropy in olivine (Fo) at 8GPa were investigated by complex impedance spectroscopy. At nominally anhydrous conditions, conduction along [100] and [001] is slightly higher than along [010] in contrast to observations made at lower pressures in earlier studies. Increasing HO content increases conductivities but activation energies are lower and HO concentration dependent. The use of polarized FTIR spectroscopy to determine HO concentrations reveals a weaker than expected effect that water has on olivine conductivity and distinguishes our results from earlier studies based on analyses using non-polarized infrared spectroscopy. We show that at HO concentrations of a few hundred wt ppm or less, that the dominant conduction mechanism at mantle temperatures continues via small polarons, such as that observed for anhydrous olivine. Our results also suggest that at depths greater than 200km, the presence of HO may not be necessary to explain regions in the upper mantle where both electrical and seismic anisotropy are observed. This can be explained by differences in the pressure dependence of the activation energy for conduction along each of the three crystallographic axes. However, while electrical anisotropy of anhydrous olivine remains weak at 8GPa, it is nevertheless enhanced by elevated concentrations (> several hundred wt ppm) of dissolved HO. At these conditions dominated by proton hopping, conductivity along [010] is highest, approximately an order of magnitude greater than along [100]. Additionally, at 1000wt ppm and 1500°C, an isotropic conductivity derived from the data is about 1 order of magnitude higher than that for nominally anhydrous olivine. Thus, in regions of the mantle characterized by anomalously high conductivities and both electrical and seismic anisotropy, significant amounts of dissolved hydrogen can be expected
The redox state of Earth's convecting mantle, masked by the lithospheric plates and basaltic magmatism of plate tectonics, is a key unknown in the evolutionary history of our planet. Here we report that large, exceptional gem diamonds like the Cullinan, Constellation, and Koh-i-Noor carry direct evidence of crystallization from a redox-sensitive metallic liquid phase in the deep mantle. These sublithospheric diamonds contain inclusions of solidified iron-nickel-carbon-sulfur melt, accompanied by a thin fluid layer of methane ± hydrogen, and sometimes majoritic garnet or former calcium silicate perovskite. The metal-dominated mineral assemblages and reduced volatiles in large gem diamonds indicate formation under metal-saturated conditions. We verify previous predictions that Earth has highly reducing deep mantle regions capable of precipitating a metallic iron phase that contains dissolved carbon and hydrogen.
The most recent advances in diamond science are reviewed, covering a variety of specific topics, such as diamond distribution in Earth, diamond composition, mineralogy and textures, diamond formation, isotope geochemistry of diamond, geochemistry, thermobarometry and geochronology of inclusions in diamonds, geology of mantle carbon. The comprehensive, cross-disciplinary nature of this review identifies some of the areas where important unknowns in diamond research can be addressed with future work: (1) the quantitative partitioning of elements and fractionation of isotopes during diamond growth, (2) the co-genetic (or not) relationship of diamond to its host inclusions and the age of diamonds, (3) the recognition and significance of primordial carbon, primary mantle carbon, or subducted carbon in the composition of diamond, (4) the speciation of C in diamond-forming fluids and the processes that control the oxygen fugacity of the mantle, (5) the deepest diamonds, their ultra-high pressure inclusions and the geodynamic processes occurring in convecting the mantle, (6) the experimental simulation of diamond formation from a variety of mantle fluids and melts, and (7) the nanostructural characteristics of diamond as they relate to all aspects of diamond formation
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.