Low back pain (LBP) in one of the most disabling symptoms affecting nearly 80% of the population worldwide. Its primary cause seems to be intervertebral disc degeneration (IDD): a chronic and progressive process characterized by loss of viable cells and extracellular matrix (ECM) breakdown within the intervertebral disc (IVD) especially in its inner region, the nucleus pulposus (NP). Over the last decades, innovative biological treatments have been investigated in order to restore the original healthy IVD environment and achieve disc regeneration. Mesenchymal stem cells (MSCs) have been widely exploited in regenerative medicine for their capacity to be easily harvested and be able to differentiate along the osteogenic, chondrogenic, and adipogenic lineages and to secrete a wide range of trophic factors that promote tissue homeostasis along with immunomodulation and anti-inflammation. Several in vitro and preclinical studies have demonstrated that MSCs are able to acquire a NP cell-like phenotype and to synthesize structural components of the ECM as well as trophic and anti-inflammatory mediators that may support resident cell activity. However, due to its unique anatomical location and function, the IVD presents distinctive features: avascularity, hypoxia, low glucose concentration, low pH, hyperosmolarity, and mechanical loading. Such conditions establish a hostile microenvironment for both resident and exogenously administered cells, which limited the efficacy of intradiscal cell therapy in diverse investigations. This review is aimed at describing the characteristics of the healthy and degenerated IVD microenvironment and how such features influence both resident cells and MSC viability and biological activity. Furthermore, we focused on how recent research has tried to overcome the obstacles coming from the IVD microenvironment by developing innovative cell therapies and functionalized bioscaffolds.
Intervertebral disc regeneration field is rapidly growing since disc disorders represent a major health problem in industrialized countries with very few possible treatments. Indeed, current available therapies are symptomatic, and surgical procedures consist in disc removal and spinal fusion, which is not immune to regardable concerns about possible comorbidities, cost-effectiveness, secondary risks and long-lasting outcomes. This review paper aims to share recent advances in stem cell therapy for the treatment of intervertebral disc degeneration. In literature the potential use of different adult stem cells for intervertebral disc regeneration has already been reported. Bone marrow mesenchymal stromal/stem cells, adipose tissue derived stem cells, synovial stem cells, muscle-derived stem cells, olfactory neural stem cells, induced pluripotent stem cells, hematopoietic stem cells, disc stem cells, and embryonic stem cells have been studied for this purpose either in vitro or in vivo. Moreover, several engineered carriers (e.g., hydrogels), characterized by full biocompatibility and prompt biodegradation, have been designed and combined with different stem cell types in order to optimize the local and controlled delivery of cellular substrates in situ. The paper overviews the literature discussing the current status of our knowledge of the different stem cells types used as a cell-based therapy for disc regeneration.
Increased circulating sclerostin and accumulation of advanced glycation end‐products (AGEs) are two potential mechanisms underlying low bone turnover and increased fracture risk in type 2 diabetes (T2D). Whether the expression of the sclerostin‐encoding SOST gene is altered in T2D, and whether it is associated with AGEs accumulation or regulation of other bone formation‐related genes is unknown. We hypothesized that AGEs accumulate and SOST gene expression is upregulated in bones from subjects with T2D, leading to downregulation of bone forming genes (RUNX2 and osteocalcin) and impaired bone microarchitecture and strength. We obtained bone tissue from femoral heads of 19 T2D postmenopausal women (mean glycated hemoglobin [HbA1c] 6.5%) and 73 age‐ and BMI‐comparable nondiabetic women undergoing hip replacement surgery. Despite similar bone mineral density (BMD) and biomechanical properties, we found a significantly higher SOST (p = .006) and a parallel lower RUNX2 (p = .025) expression in T2D compared with non‐diabetic subjects. Osteocalcin gene expression did not differ between T2D and non‐diabetic subjects, as well as circulating osteocalcin and sclerostin levels. We found a 1.5‐fold increase in total bone AGEs content in T2D compared with non‐diabetic women (364.8 ± 78.2 versus 209.9 ± 34.4 μg quinine/g collagen, respectively; p < .001). AGEs bone content correlated with worse bone microarchitecture, including lower volumetric BMD (r = −0.633; p = .02), BV/TV (r = −0.59; p = .033) and increased trabecular separation/spacing (r = 0.624; p = .023). In conclusion, our data show that even in patients with good glycemic control, T2D affects the expression of genes controlling bone formation (SOST and RUNX2). We also found that accumulation of AGEs is associated with impaired bone microarchitecture. We provide novel insights that may help understand the mechanisms underlying bone fragility in T2D. © 2020 American Society for Bone and Mineral Research (ASBMR).
IntroductionOsteoarthritis (OA) is the most common musculoskeletal disease. Current treatments for OA are mainly symptomatic and inadequate since none results in restoration of fully functional cartilage. Hyaluronic Acid (HA) intra-articular injections are widely accepted for the treatment of pain associated to OA. The goal of HA viscosupplementation is to reduce pain and improve viscoelasticity of synovial fluid. Platelet-rich plasma (PRP) has been also employed to treat OA to possibly induce cartilage regeneration. The combination of HA and PRP could supply many advantages for tissue repair. Indeed, it conjugates HA viscosupplementation with PRP regenerative properties. The aim of this study was to evaluate the rheological and biological properties of different HA compositions in combination with PRP in order to identify (i) the viscoelastic features of the HA-PRP blends, (ii) their biological effect on osteoarthritic chondrocytes and (iii) HA formulations suitable for use in combination with PRP.Materials and MethodsHA/PRP blends have been obtained mixing human PRP and three different HA at different concentrations: 1) Sinovial, 0.8% (SN); 2) Sinovial Forte 1.6% (SF); 3) Sinovial HL 3.2% (HL); 4) Hyalubrix 1.5% (HX). Combinations of phosphate buffered saline (PBS) and the four HA types were used as control. Rheological measurements were performed on an Anton PaarMCR-302 rheometer. Amplitude sweep, frequency sweep and rotational measurements were performed and viscoelastic properties were evaluated. The rheological data were validated performing the tests in presence of Bovine Serum Albumin (BSA) up to ultra-physiological concentration (7%). Primary osteoarthritic chondrocytes were cultured in vitro with the HA and PRP blends in the culture medium for one week. Cell viability, proliferation and glycosaminoglycan (GAG) content were assessed.ResultsPRP addition to HA leads to a decrease of viscoelastic shear moduli and increase of the crossover point, due to a pure dilution effect. For viscosupplements with HA concentration below 1% the viscoelasticity is mostly lost. Results were validated also in presence of proteins, which in synovial fluid are more abundant than HA.Chondrocytes proliferated overtime in all different culture conditions. The proliferation rate was higher in chondrocytes cultured in the media containing PRP compared to the cultures with different HA alone. GAG content was significantly higher in chondrocytes cultured in PRP and HL blend.DiscussionWe investigated the rheological and biological properties of four different HA concentrations when combined with PRP giving insights on viscoelastic and biological properties of a promising approach for future OA therapy. Our data demonstrate that PRP addition is not detrimental to the viscosupplementation effect of HA. Viscosupplements containing low HA concentration are not indicated for combination with PRP, as the viscoelastic properties are lost. Although having the same rheological behavior of SF and HX, HL was superior in stimulating extracellula...
The current coronavirus disease 2019 (COVID-19) pandemic has revolutionized global healthcare in an unprecedented way and with unimaginable repercussions. Resource reallocation, socioeconomic confinement and reorganization of production activities are current challenges being faced both at the national and international levels, in a frame of uncertainty and fear. Hospitals have been restructured to provide the best care to COVID-19 patients while adopting preventive strategies not to spread the infection among healthcare providers and patients affected by other diseases. As a consequence, the concept of urgency and indications for elective treatments have been profoundly reshaped. In addition, several providers have been recruited in COVID-19 departments despite their original occupation, resulting in a profound rearrangement of both inpatient and outpatient care. Orthopaedic daily practice has been significantly affected by the pandemic. Surgical indications have been reformulated, with elective cases being promptly postponed and urgent interventions requiring exceptional attention, especially in suspected or COVID-19 + patients. This has made a strong impact on inpatient management, with the need of a dedicated staff, patient isolation and restrictive visiting hour policies. On the other hand, outpatient visits have been limited to reduce contacts between patients and the hospital personnel, with considerable consequences on post-operative quality of care and the human side of medical practice. In this review, we aim to analyze the effect of the COVID-19 pandemic on the orthopaedic practice. Particular attention will be dedicated to opportune surgical indication, perioperative care and safe management of both inpatients and outpatients, also considering repercussions of the pandemic on resident education and ethical implications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.