Dry fibers coming from garden waste, originating from Opuntia ficus indica, were introduced in amounts of either 8 or 16 wt % into a self-produced thermoplastic starch (TPS) based on potato starch and glycerol. Thermal (differential scanning calorimetry, DSC), mechanical (tensile tests), and morphological characterization with scanning electron microscopy (SEM) and performing energy-dispersive X-ray spectrometry (microanalysis) were carried out. The results indicated that the uneven distribution and variable geometry of fibers introduced led to a reduction of tensile stress and strain with respect to pure TPS. However, the positive effects of prolonged mixing and increased thickness were highlighted, which suggest the fabrication of the composite could be improved in the future by controlling the manufacturing procedure.
Opuntia cladodes are a typical vegetable waste, from which mucilage in gel form can be extracted. This work proposes blending it with a self-produced thermoplastic starch (TPS), originating from potato starch with a high content in glycerol (ca. 30%). Three methods were compared for extraction, bare maceration (MA), mechanical blending (ME) and mechanical blending following maceration (MPM) to produce films with an approximate thickness of 150 μm. For the comparison, tensile testing, differential scanning calorimetry and scanning electron microscopy were used. The MPM process proved the most effective, not only for extraction yielding, but also to obtain a larger deformation of the samples with respect to the one allowed by the pure TPS films. A considerable plasticization effect was observed. Despite this, the mechanical performance is still not completely satisfactory, and the expected effect of the calcium and magnesium salts contained in the mucilage to improve the rigidity of the TPS film was not really revealed. Prospected improvements would concern the fabrication process and the investigation of other possible loading modes and sample geometries.
The paper presents an experimental study on mortar samples taken from historic and monumental buildings damaged or collapsed following the seismic events in Central Italy (2016-2017). Sixty-one samples were analysed with a set of diagnostic investigations to characterize the mortar and correlate it with the performance of the masonry. The techniques used were: X-Ray diffraction, scanning electron microscopy and microanalysis, differential scanning calorimetry, calcimetry, Fourier-transform infrared spectroscopy, soluble salt analysis by conductimetry and dosage of anionic species by ion chromatography, particle-size analysis, direct shear. Microstructural characterization of the mortars revealed differences in mortar composition depending on their provenance. In particular the samples from Norcia contained large quantities of calcite while in the mortars from Pretare, dolomite was identified. In the case of Amatrice, only a few samples showed crystalline phases and compounds ascribable to binders. These results were largely confirmed by the other chemical and physical analysis performed, and mechanical tests also demonstrated low cohesion. The tests showed that in almost all the samples, poor quality mortars were used, and, in some cases, underachieving binder mortar.
The present work focuses on majolica objects from the collection of the museum of ceramic in Ascoli Piceno (Italy). The scientific investigation was performed on fragments detached from seven maiolicas attributed to the Castelli production (Abruzzi region) and one majolica from the Ascoli Piceno production (Marche region). The Castelli artifacts (late sixteenth–early eighteenth century) belong to the decorated style known as ‘‘compendiario.’’ The piece from Ascoli Piceno recalls the decoration style of the other considered objects and is attributable to the\ud ‘‘Paci’’ manufacture (first half of the nineteenth century). The selected objects were investigated by fiber optics reflectance spectroscopy, micro-X-ray fluorescence spectroscopy and scanning electron microscopy coupled with electron-dispersive X-ray spectrometry. The ceramic bodies of all objects are calcareous, whereas the glazes are lead-alkali type opacified by tin dioxide. Blue and purplishred decorations were obtained by cobalt and manganese compounds dissolved in the glaze, respectively. Yellow and orange decorations were obtained by particles of lead antimonate and hematite. Finally, black decorations were\ud obtained using compounds rich in manganese and iron. The study contributes to knowledge on the production of Castelli ceramics and presents first archaeometric data on the maiolica production from Ascoli Piceno. The scientific examination highlights continuity with the Renaissance production, and the joint contribution of the three analytical techniques suggests distinctive features among different productions, thus integrating and refining the information obtained by the art-historical study
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.