By using the dyadic Green's matrix spectral method, we demonstrate that aperiodic deterministic Vogel spirals made of electric dipoles support light localization in three dimensions, an effect that does not occur in traditional uniform random media. We discover a light localization transition in Vogel spiral arrays embedded in three-dimensional space by evaluating the Thouless conductance, the level spacing statistics, and by performing a finite-size scaling. This light localization transition is different from the Anderson transition because Vogel spirals are deterministic structures. Moreover, this transition occurs when the vector character of light is fully taken into account, in contrast to what is expected for traditional uniform random media of point-like scatterers. We show that light localization in Vogel arrays is a collective phenomenon that involves the contribution of multiple length scales. Vogel spirals are suitable photonic platforms to localize light thanks to their distinctive structural correlation properties that enable collective electromagnetic excitations with strong lightmatter coupling. Our results unveil the importance of aperiodic correlations for the engineering of photonic media with strongly enhanced light-matter coupling compared to the traditional periodic and homogeneous random media. arXiv:1810.01909v2 [cond-mat.dis-nn]
The efficient interaction of light with quantum emitters is crucial to most applications in nano and quantum photonics, such as sensing or quantum information processing. Effective excitation and photon extraction are particularly important for the weak signals emitted by a single atom or molecule. Recent works have introduced novel collection strategies, which demonstrate that large efficiencies can be achieved by either planar dielectric antennas combined with high numerical aperture objectives or optical nanostructures that beam emission into a narrow angular distribution. However, the first approach requires the use of elaborate collection optics, while the latter is based on accurate positioning of the quantum emitter near complex nanoscale architectures; hence, sophisticated fabrication and experimental capabilities are needed. Here we present a theoretical and experimental demonstration of a planar optical antenna that beams light emitted by a single molecule, which results in increased collection efficiency at small angles without stringent requirements on the emitter position. The proposed device exhibits broadband performance and is spectrally scalable, and it is simple to fabricate and therefore applies to a wide range of quantum emitters. Our design finds immediate application in spectroscopy, quantum optics and sensing.
The effects of a Si-rich silicon oxide (SRO) layer containing silicon nanocrystals as photoluminescence down-shifter layer on a conventional Si solar cell were investigated. Two SRO layers with different thicknesses but same composition were deposited on top of Si solar cells by plasma-enhanced chemical vapor deposition and followed by high temperature annealing to precipitate silicon nanocrystals. The SRO layers absorb efficiently high energy photons (especially higher than twice Si bandgap) and emit photons at longer wavelength, which are in turn absorbed by Si. A relative increase of about 14% to the internal quantum efficiency has been observed.
Many natural patterns and shapes, such as meandering coastlines, clouds, or turbulent flows, exhibit a characteristic complexity that is mathematically described by fractal geometry. Here, we extend the reach of fractal concepts in photonics by experimentally demonstrating multifractality of light in arrays of dielectric nanoparticles that are based on fundamental structures of algebraic number theory. Specifically, we engineered novel deterministic photonic platforms based on the aperiodic distributions of primes and irreducible elements in complex quadratic and quaternions rings. Our findings stimulate fundamental questions on the nature of transport and localization of wave excitations in deterministic media with multi-scale fluctuations beyond what is possible in traditional fractal systems. Moreover, our approach establishes structure–property relationships that can readily be transferred to planar semiconductor electronics and to artificial atomic lattices, enabling the exploration of novel quantum phases and many-body effects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.