The aim of this study was to explore the role of the mitochondrial alternative oxidase (AOX) in the protection of photosynthesis during drought in wheat leaves. The relative water contents of water-replete and drought-exposed wheat plants were 97.2+/-0.3 and 75+/-2, respectively. Drought increased the amount of leaf AOX protein and also enhanced the rate of AOX-dependent O(2) uptake by the respiratory electron transport chain. The amount of the reduced, active form of the AOX protein was specifically increased by drought. The AOX inhibitor salicylhydroxamic acid (1 mM; SHAM) inhibited 70% of AOX activity in vivo in both water-replete and drought-exposed plants. Plants treated with SHAM were then exposed to low (100), high (350), or excess light (800 mumol photons m(-2) s(-1)) for 90 min. SHAM did not modify chlorophyll a fluorescence quenching parameters in water-replete controls after any of these treatments. However, while the maximal quantum yield of photosystem II (PSII) electron transport (F(v)/F(m)) was not affected by SHAM, the immediate quantum yield of PSII electron transport (Phi(PSII)) and photochemical quenching (qP) were gradually reduced by increasing irradiance in SHAM-treated drought-exposed plants, the decrease being most pronounced at the highest irradiance. Non-photochemical quenching (NPQ) reached near maximum levels in plants subjected to drought at high irradiance. However, a combination of drought and low light caused an intermediate increase in NPQ, which attained higher values when AOX was inhibited. Taken together, these results show that up-regulation of the respiratory AOX pathway protects the photosynthetic electron transport chain from the harmful effects of excess light.
SummaryMassive degradation of photosynthetic proteins is the hallmark of leaf senescence; however the mechanism involved in chloroplast protein breakdown is not completely understood. As small 'senescence-associated vacuoles' (SAVs) with intense proteolytic activity accumulate in senescing leaves of soybean and Arabidopsis, the main goal of this work was to determine whether SAVs are involved in the degradation of chloroplastic components. SAVs with protease activity were readily detected through confocal microscopy of naturally senescing leaves of tobacco (Nicotiana tabacum L.). In detached leaves incubated in darkness, acceleration of the chloroplast degradation rate by ethylene treatment correlated with a twofold increase in the number of SAVs per cell, compared to untreated leaves. In a tobacco line expressing GFP targeted to plastids, GFP was re-located to SAVs in senescing leaves. SAVs were isolated by sucrose density gradient centrifugation. Isolated SAVs contained chloroplast-targeted GFP and the chloroplast stromal proteins Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) and glutamine synthetase, but lacked the thylakoid proteins D1 and light-harvesting complex II of the photosystem II reaction center and photosystem II antenna, respectively. In SAVs incubated at 30°C, there was a steady decrease in Rubisco levels, which was completely abolished by addition of protease inhibitors. These results indicate that SAVs are involved in degradation of the soluble photosynthetic proteins of the chloroplast stroma during senescence of leaves.
Photosynthesis, respiration, and other processes produce reactive oxygen species (ROS) that can cause oxidative modifications to proteins, lipids, and DNA. The production of ROS increases under stress conditions, causing oxidative damage and impairment of normal metabolism. In this work, oxidative damage to various subcellular compartments (i.e. chloroplasts, mitochondria, and peroxisomes) was studied in two cultivars of wheat differing in ascorbic acid content, and growing under good irrigation or drought. In well-watered plants, mitochondria contained 9-28-fold higher concentrations of oxidatively modified proteins than chloroplasts or peroxisomes. In general, oxidative damage to proteins was more intense in the cultivar with the lower content of ascorbic acid, particularly in the chloroplast stroma. Water stress caused a marked increase in oxidative damage to proteins, particularly in mitochondria and peroxisomes. These results indicate that mitochondria are the main target for oxidative damage to proteins under well-irrigated and drought conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.