This paper presents a new sea surface height (SSH) estimation using GNSS reflectometry (GNSS-R). It is a cost-effective remote sensing technique and owns long-term stability besides high temporal and spatial resolution. Initial in-situ SSH estimates are first produced by using the SNR data of BDS (L1, L5, L7), GPS (L1, L2, L5), and GLONASS (L1, L2), of MAYG station, which is located in Mayotte, France near the Indian Ocean. The results of observation data over a period of seven days showed that the root mean square error (RMSE) of SSH estimation is about 32 cm and the correlation coefficient is about 0.83. The tidal waveform is reconstructed based on the initial SSH estimates by utilizing the wavelet de-noising technique. By comparing the tide gauge measurements with the reconstructed tidal waveform at SSH estimation instants, the SSH estimation errors can be obtained. The results demonstrate that the correlation coefficient and RMSE of the wavelet de-noising based SSH estimation is 0.95 and 19 cm, respectively. Compared with the initial estimation results, the correlation coefficient is improved by about 14.5%, while the RMSE is reduced by 40.6%.
For time-critical precise applications, one popular technology is the real-time precise point positioning (PPP). In recent years, there has been a rapid development in the BeiDou Navigation Satellite System (BDS), and the constellation of global BDS (BDS-3) has been fully deployed. In addition to the regional BDS (BDS-2) constellation, the real-time stream CLK93 has started to support the BDS-3 constellation, indicating that the real-time PPP processing involving BDS-3 observations is feasible. In this study, the global positioning performance of real-time PPP with BDS-3/BDS-2 observations is initially evaluated using the datasets from 147 stations. In the east, north and upward directions, positioning accuracy of 1.8, 1.2 and 2.5 cm in the static mode, and of 6.7, 5.1 and 10.4 cm in the kinematic mode can be achieved for the BDS-3/BDS-2 real-time PPP, respectively, while the corresponding convergence time with a threshold of 10 cm is 32.9, 23.7 and 32.8 min, and 66.9, 42.9 and 69.1 min in the two modes in the three directions, respectively. To complete this, the availability of BDS-3/BDS-2 constellations, the quality of BDS-3/BDS-2 real-time precise satellite products, and the BDS-3/BDS-2 post-processed PPP solutions are also analyzed. For comparison, the results for the GPS are also presented.
An improved method for retrieving Above-ground Biomass (AGB) and Canopy Height (CH) based on an observable from Cyclone Global Navigation Satellite System (CYGNSS), soil moisture from Soil Moisture Active Passive (SMAP) and location is proposed. The observable derived from CYGNSS is more sensitive to vegetation. The CYGNSS observable, soil moisture and the location are used as the input features of an Artificial Neural Network (ANN) to retrieve AGB and CH. The sensitivity analysis of the CYGNSS observable to target parameters shows that the proposed observable is more sensitive to AGB/CH than the conventional observable. The AGB/CH retrievals of the improved method show that it has better performance than that of the traditional method, especially in the areas with AGB in the range of 0 to100 Mg/ha and CH in the range of 0 to10 m. For AGB retrievals, the root mean square error (RMSE) and correlation coefficient are 64.84 Mg/ha and 0.80 in the range of 0 to 550 Mg/ha. Compared with the traditional method, the RMSE is decreased by 11.63%, while the correlation coefficient is increased by 5.26%. For CH retrievals, the RMSE and correlation coefficient are 5.97 m and 0.83 in the range of 0 to 45 m. The RMSE is decreased by 12.59%, while the correlation coefficient is increased by 5.06%. The analysis of the improved method in different areas shows that the performance of the improved method over the area with high vegetation is better than the area with low vegetation. The results obtained here further strengthens the capability of GNSS-R for global AGB/CH retrievals as well as different land cover areas.
In this paper, the effect of geographical location on Cyclone Global Navigation Satellite System (CYGNSS) observables is demonstrated for the first time. It is found that the observables corresponding to the same wind speed vary with geographic location regularly. Although latitude and longitude information is included in the conventional method, it cannot effectively reduce the errors caused by geographic differences due to the non-monotonic changes of observables with respect to latitude and longitude. Thus, an improved method for Global Navigation Satellite System Reflectometry (GNSS-R) wind speed retrieval that takes geographical differences into account is proposed. The sea surface is divided into different areas for independent wind speed retrieval, and the training set is resampled by considering high wind speed. To balance between the retrieval accuracies of high and low wind speeds, the results with the random training samples and the resampling samples are fused. Compared with the conventional method, in the range of 0–20 m/s, the improved method reduces the Root Mean Square Error (RMSE) of retrieved wind speeds from 1.52 to 1.34 m/s, and enhances the correlation coefficient from 0.86 to 0.90; while in the range of 20–30 m/s, the RMSE decreases from 8.07 to 4.06 m/s, and the correlation coefficient increases from 0.04 to 0.45. Interestingly, the SNR observations are moderately correlated with marine gravities, showing correlation coefficients of 0.5–0.6, which may provide a useful reference for marine gravity retrieval using GNSS-R in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.