Considerable attention has recently been focused on classification and regression-based convolutional neural network (CNN) and long short-term memory (LSTM) due to their excellent performance in capturing complex spatial and temporal information characteristics for structural damage identification. However, few studies have considered structural damage identification as a classification and regression problem. In addition, bridges in practical engineering are vulnerable to various environmental and vehicle loading conditions. Hence, this study proposed a new two-stage CNN–LSTM configuration for bridge damage identification using vibration data considering the influence of temperatures. First, a classification-based CNN–LSTM is designed to perform multiclass damage detection tasks, and then a regression-based CNN–LSTM is developed for damage localization and severity prediction tasks. The performance of the proposed damage identification method was evaluated through a simulation dataset of a concrete highway bridge model and a field experiment dataset of Z24-bridge (Switzerland). In addition, a set of statistical evaluation metrics such as sparse categorical cross-entropy loss, accuracy, confusion matrix, mean squared loss, mean absolute error, mean absolute percentage error, and coefficient of determination were used to compare the damage identification performance of the proposed CNN–LSTM configuration with a regular CNN model and conventional machine learning (ML) algorithms. Prediction results indicate that the proposed CNN–LSTM model outperforms the regular CNN model and conventional ML algorithms for bridge damage identification.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.