<abstract> <p>Energy is seen as one of the most determinant factors for a nation's economic development. The Sun is an incredible source of inexhaustible energy. The efficiency of the conversion and application of Photovoltaic (PV) systems is related to the PV module's electricity generation and the location's solar potentials. Thus, the solar parameters of a region are important for feasibility studies on the application of solar energy. Although solar energy is available everywhere in the world, countries closest to the equator receive the greatest solar radiation and have the highest potential for solar energy production and application. Dhofar in Salalah-Oman is one of the cities in Oman with high temperatures all year round. The city has been reported to exhibit a maximum solar flux of about 1360 w/m<sup>2</sup> and a maximum accumulative solar flux of about 12,586,630 W/m<sup>2</sup> in March. These interesting solar potentials motivated the call for investment in solar energy in the region as an alternative to other non-renewable energy sources such as fossil fuel-powered generators. As a consequence, several authors have reported on the application of different solar energy in the different cities in Oman, especially in remote areas and various results reported. Therefore, the present review highlighted the achievements reported on the availability of solar energy sources in different cities in Oman and the potential of solar energy as an alternative energy source in Dhofar. The paper has also reviewed different PV techniques and operating conditions with emphasis on the advanced control strategies used to enhance the efficiency and performance of the PV energy system. Applications of standalone and hybrid energy systems for in-house or remote power generation and consumption in Dhofar were discussed. It also focused on the relevance of global radiation data for the optimal application of PV systems in Dhofar. The future potential for the full application of solar systems in the region was mentioned and future work was recommended.</p> </abstract>
This paper aims to develop an analytical model for the prediction of the electricity produced in a Photovoltaic Power Station (PVS). In this context, the developed mathematical model is implemented in a Simulink Model. The obtained simulation results are compared to the experimental data, the results obtained from the software Homer-Pro model, and the results given by the online PV calculator (Photovoltaic Geographical Information System), developed by the European commission. The comparison results show the reliability of the developed analytical model for specific months of the year. However, an error of 10% between simulations and experimental results is observed for July and August. This error is mainly due to the effects of humidity and dust that were not considered in the analytical model. Nevertheless, the monthly and yearly produced electricity values show the robustness of the proposed model to predict the PVS generated power. The developed model will be used as a powerful tool for data prediction and the optimization of electricity generation. This permits us to reduce the losses in power generation by optimizing the connected generating power stations to the power grid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.