One of the crucial problems for taxi drivers is to efficiently locate passengers in order to increase profits. The rapid advancement and ubiquitous penetration of Internet of Things (IoT) technology into transportation industries enables us to provide taxi drivers with locations that have more potential passengers (more profitable areas) by analyzing and querying taxi trip data. In this paper, we propose a query processing system, called Distributed Profitable-Area Query (DISPAQ) which efficiently identifies profitable areas by exploiting the Apache Software Foundation’s Spark framework and a MongoDB database. DISPAQ first maintains a profitable-area query index (PQ-index) by extracting area summaries and route summaries from raw taxi trip data. It then identifies candidate profitable areas by searching the PQ-index during query processing. Then, it exploits a Z-Skyline algorithm, which is an extension of skyline processing with a Z-order space filling curve, to quickly refine the candidate profitable areas. To improve the performance of distributed query processing, we also propose local Z-Skyline optimization, which reduces the number of dominant tests by distributing killer profitable areas to each cluster node. Through extensive evaluation with real datasets, we demonstrate that our DISPAQ system provides a scalable and efficient solution for processing profitable-area queries from huge amounts of big taxi trip data.
Due to the rapid development of IoT(Internet of Things) technology, traditional taxis are connected through dispatchers and location systems. Typically, modern taxis have embedded with GPS(Global Positioning System), which aims for obtaining the route information. By analyzing the frequency of taxi trip events, we can find the frequent route for a given query time. However, a scalability problem would occur when we convert the raw location data of taxi trip events into the analyzed frequency information due to the volume of location data. For this problem, we propose a NoSQL based top-K query system for taxi trip events. First, we analyze raw taxi trip events and extract frequencies of all routes. Then, we store the frequency information into hash-based index structure of MongoDB which is a document-oriented NoSQL database. Efficient top-K query processing for frequent route is done with the top of the MongoDB. We validate the efficiency of our algorithms by using real taxi trip events of New York City.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.