A hierarchically ordered array of Ag-nanorod bundles is achieved using an inexpensive binary-template-assisted electrodeposition technique. In every bundle, many small gaps are formed between adjacent Ag-nanorods, where "hot spots" are generated. As a result, this plasmonic nanostructure exhibits SERS enhancements of approximately eight orders of magnitude with uniform and reproducible SERS signal throughout the whole chip.
BackgroundThe objective of this study was to establish a culture system and elucidate the unique characteristics of a bovine mammary epithelial cell line in vitro.MethodologyMammary tissue from a three year old lactating dairy cow (ca. 100 d relative to parturition) was used as a source of the epithelial cell line, which was cultured in collagen-coated tissue culture dishes. Fibroblasts and epithelial cells successively grew and extended from the culturing mammary tissue at the third day. Pure epithelial cells were obtained by passages culture.Principal FindingsThe strong positive immunostaining to cytokeratin 18 suggested that the resulting cell line exhibited the specific character of epithelial cells. Epithelial cells cultured in the presence of 10% FBS, supraphysiologic concentrations of insulin, and hydrocortisone maintained a normal diploid chromosome modal number of 2n = 60. Furthermore, they were capable of synthesizing β-casein (CSN2), acetyl-CoA carboxylase-α (ACACA) and butyrophilin (BTN1A1). An important finding was that frozen preservation in a mixture of 90% FBS and 10% DMSO did not influence the growth characteristics, chromosome number, or protein secretion of the isolated epithelial cell line.ConclusionsThe obtained mammary epithelial cell line had normal morphology, growth characteristics, cytogenetic and secretory characteristics, thus, it might represent an useful tool for studying the function of Chinese Holstein dairy cows mammary epithelial cell (CMECs).
Early consumption of starter feed promotes rumen development in lambs. We examined rumen development in lambs fed starter feed for 5 weeks using histological and biochemical analyses and by performing high-throughput sequencing in rumen tissues. Additionally, rumen contents of starter feed-fed lambs were compared to those of breast milk-fed controls. Our physiological and biochemical findings revealed that early starter consumption facilitated rumen development, changed the pattern of ruminal fermentation, and increased the amylase and carboxymethylcellulase activities of rumen micro-organisms. RNA-seq analysis revealed 225 differentially expressed genes between the rumens of breast milk- and starter feed-fed lambs. These DEGs were involved in many metabolic pathways, particularly lipid and carbohydrate metabolism, and included HMGCL and HMGCS2. Sequencing analysis of 16S rRNA genes revealed that ruminal bacterial communities were more diverse in breast milk-than in starter feed-fed lambs, and each group had a distinct microbiota. We conclude that early starter feeding is beneficial to rumen development and physiological function in lambs. The underlying mechanism may involve the stimulation of ruminal ketogenesis and butanoate metabolism via HMGCL and HMGCS2 combined with changes in the fermentation type induced by ruminal microbiota. Overall, this study provides insights into the molecular mechanisms of rumen development in sheep.
A facile fabrication approach of large-scale flexible films is reported, with one surface side consisting of Ag-nanoparticle (Ag-NP) decorated polyacrylonitrile (PAN) nanohump (denoted as Ag-NPs@PAN-nanohump) arrays. This is achieved via molding PAN films with ordered nanohump arrays on one side and then sputtering much smaller Ag-NPs onto each of the PAN-nanohumps. Surface-enhanced Raman scattering (SERS) activity of the Ag-NPs@PAN-nanohump array films can be improved by curving the flexible PAN film with ordered nanohump arrays during the Ag-sputtering process to increase the density of the Ag-NPs on the sidewalls of the PAN-nanohumps. More 3D hot spots are thus achieved on a large-scale. The Ag-NPs@PAN-nanohump array films show high SERS activity with good Raman signal reproducibility for Rhodamine 6G probe molecules. To trial their practical application, the Ag-NPs@PAN-nanohump array films are employed as SERS substrates for trace detection of trinitrotoluene and a congener of polychlorinated biphenyls. A lower detection limit of 10(-12) m and 10(-5) m can be achieved, respectively. Furthermore, the flexible Ag-NPs@PAN-nanohump array films can also be utilized as swabs to probe traces of methyl parathion on the surface of fruits such as apples. The as-fabricated SERS substrates therefore have promising potential for applications in rapid safety inspection and environmental protection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.