Background The central nervous system integrates information from different sensory inputs (vestibular, visual, and somatosensory) to maintain balance. However, strategies for weighing sensory information change as maturation occurs. Purpose The purpose of this study was to: (1) evaluate postural control development in a large sample of healthy children aged 5 to 17 years old, (2) analyze changes in sensory weighting strategies as maturation occurs, and (3) determine the extent to which anthropometric characteristics (height, weight, body mass index [BMI]) influence postural control. Sample Size This study recruited 120 healthy children, equally distributed in gender and number, into four age groups (5–8 years, 9–11 years, 12–14 years, and 15–17 years) and compared them to a control group of 20 healthy adults (aged 20–25 years). Research Design The sensory organization test (SOT) was used to assess overall balance and the use of specific sensory inputs to maintain postural control. All children underwent the six SOT conditions: (1) eyes open, surround and platform stable, (2) eyes closed, surround and platform stable, (3) eyes open, sway-referenced surround, platform stable, (4) eyes open, sway-referenced platform, (5) eyes closed, sway-referenced platform, and (6) eyes open, sway-referenced surround and platform. Data Analysis Condition-specific equilibrium scores (ES), composite equilibrium scores (CES), and sensory analysis ratios were analyzed to determine whether the performance was related to age, gender, or specific anthropometric characteristics (height, weight, and BMI). Results Data showed a significant age-associated improvement in ES for all 6 conditions (p < 0.05) and in CES (p = 0.001). For both genders, (1) somatosensory function was adult-like by age 5 to 8 years, (2) visual function peaked around age 12 years, and (3) vestibular function reached maturity by age 15 to 17 years (p < 0.05). A moderate positive correlation (r(140) = 0.684, p = 0.01; two-tailed) between height and CES was found and a weak positive correlation (r(140) = 0.198, p = 0.01) between height and somatosensory ratio was noted. Lower vestibular ratio scores were observed in children who had a higher BMI (p = 0.001). Conclusion The efficient use of individual sensory system input to maintain balance does not occur at the same age. Age and gender affect the changes in sensory weighting strategies, while height and BMI influence postural control in children. These factors need to be accounted for in child assessment.
Ulceration of diabetic foot represents one of the most concerning complications associated with uncontrolled blood sugar in diabetes mellitus. The aim of this study is to evaluate the condition of twenty-two diabetic patients with different degrees of ulceration in their feet after daily secessions of carbon dioxide therapy. Blood flow to the affected foot was measured by Doppler; also the size, color, degree of ulceration and sensation of the ulcerative area were all evaluated. Results showed improvement of blood flow to the affected foot as well as improvement in the sensation and color of the ulcerative area. It was concluded that carbon dioxide therapy of diabetic foot was promising and needed thorough investigation to be brought widely into application.
Background Pediatric oculomotor function can be evaluated via videonystagmography. Adult normative data for saccades and smooth pursuit tests cannot be used as a benchmark for pediatric patients because children's peripheral and central systems continue to mature throughout adolescence. Purpose The purpose of this study was to establish normative data for saccade and smooth pursuit tests that can be used clinically in the assessment of vestibular and neurological disorders in children, and to investigate the effect of age and eye movement direction (left/right) on tests parameters. Research Design The present study is prospective cross-sectional study. Study Sample A total of 120 healthy children were recruited and equally distributed according to age and gender to each of the following groups: 5-8, 9-11, 12-14, and 15-17 years old. Participants had to pass a comprehensive otological and neurological assessment prior to inclusion in the study. Each subject underwent saccade and smooth pursuit testing. Data Collection and Analysis Saccade latency, velocity and accuracy/precision, and smooth pursuit gain were analyzed across groups using a two-way repeated measure multivariate analysis of variance (MANOVA). Results Saccadic latency was longer in the youngest group aged 5-8 years old (305 ± 48 msec) in comparison to children aged 9-11 years old (276 ± 22 msec) (P = 0.017), 12-14 years old (252 ± 34 msec) (P = 0.001) adolescents 15-17 years (256 ± 33 msec) (P = 0.001). Age did not affect the results of saccadic velocity and accuracy/precision. Saccade parameters (latency, velocity, accuracy/ precision) were not affected by oculomotor direction (left vs. right). Smooth pursuit gain increased from 0.63 in children aged 5-8 years old to 0.85 in children aged 15-17 years (P = 0.0001). The percentage of gain asymmetry was significantly different in the youngest two groups. Conclusion Saccade latency decreased as age increased. Smooth pursuit gains increased with increased age. Saccade velocity and accuracy/precision did not change significantly from ages 5-8 to 15-17 years of age. These data provide normative values for pediatric oculomotor evaluation and suggest that saccade and pursuit pathways may mature at different rates.
These results along with the previous studies may suggest that the efferent system is maximally stimulated by moderate signal-level tones (i.e., 30-40 dB HL), and that efferent activity is dependent on frequency cues of both the stimulus and suppressor tones. Other factors that might be affecting efferent influence on the CAP in humans such as sound duration, phase, bandwidth, and periodicity need to be further investigated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.