This study aimed at showing that the classes of generalized non-expansive mappings due to Hardy and Rogers and the mappings satisfying Suzuki's condition (C) are independent and study some basic properties of generalized non-expansive mappings. Also, we introduce a new iterative scheme, called JF iterative scheme, and prove convergence results for generalized non-expansive mappings due to Hardy and Rogers in uniformly convex Banach spaces. Moreover, we show numerically that JF iterative scheme converges to a fixed point of generalized non-expansive mappings faster than some known and leading iterative schemes. As an application, we utilize newly defined iterative scheme to approximate the solution of a delay differential equation. Also, we present some nontrivial illustrative numerical examples to support main results. Our results are new and extend several relevant results in the existing literature.
The purpose of this article is to introduce a new two-step iterative algorithm, called F * algorithm, to approximate the fixed points of weak contractions in Banach spaces. It is also showed that the proposed algorithm converges strongly to the fixed point of weak contractions. Furthermore, it is proved that F * iterative algorithm is almost-stable for weak contractions, and converges to a fixed point faster than Picard, Mann, Ishikawa, S, normal-S, and Varat iterative algorithms. Moreover, a data dependence result is obtained via F * algorithm. Some numerical examples are presented to support the main results. Finally, the solution of the nonlinear quadratic Volterra integral equation is approximated by utilizing our main result. The results of the paper are new and extend several relevant results in the literature. Keywords F * iterative algorithm • Weak contraction • Fixed points • Numerically stable • Data dependence • Nonlinear quadratic Volterra integral equation Mathematics Subject Classification 47H05 • 47H09 • 47H10 1 Introduction and preliminaries Throughout this article, we assume that Z + is the set of nonnegative integers, Y a nonempty, closed and convex subset of a Banach space X , and F(G), the set of fixed points of the self-mapping G defined on Y. The iterative approximation of fixed points of linear and nonlinear mappings is one of the most significant tools in the fixed point theory that has many applications in different fields like Engineering, Differential equations, Integral equations, etc. Hence, a large number of researchers introduced and studied many iterative algorithms for certain classes of mappings Communicated by Apala Majumdar.
In this article, we study the JF iterative algorithm to approximate the fixed points of a non-linear operator that satisfies condition (E) in uniformly convex Banach spaces. Further, some weak and strong convergence results are presented for the same operator using the JF iterative algorithm. We also demonstrate that the JF iterative algorithm is weakly w2G-stable with respect to almost contractions. In connection with our results, we provide some illustrative numerical examples to show that the JF iterative algorithm converges faster than some well-known iterative algorithms. Finally, we apply the JF iterative algorithm to estimate the solution of a functional non-linear integral equation. The results of the present manuscript generalize and extend the results in existing literature and will draw the attention of researchers.
In this paper, we study a three step iterative scheme to approximate fixed points of Suzuki's generalized non-expansive mappings. We establish some weak and strong convergence results for such mappings in uniformly convex Banach spaces. Further, we show numerically that iterative scheme (1.8) converges faster than some other known iterations for Suzuki's generalized non-expansive mappings. To support our claim, we give an illustrative example and approximate fixed points of such mappings using Matlab program. Our results are new and generalize several relevant results in the literature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.