Abstract-A compact ultra-wideband (UWB) antenna with simple structure is presented. To achieve UWB performance with a compact size, two open ended rounded inverted L-shaped slots are etched on the square ground plane. Moreover, further bandwidth enhancement is obtained by cutting a bevel on the asymmetrical radiating patch. The antenna is fed by a 50 Ω microstrip line and has a small size of 28 × 28 × 1.6 mm 3 . The simulation time-and frequency-domain results obtained from HFSS simulator package are verified by experimental measurements. Both simulated and measured results show that the antenna can provide a wide impedance bandwidth of more than 129% from 2.7 to 12.55 GHz with −10-dB reflection coefficient. Besides, it is shown that by introducing several antenna designs, the impedance bandwidth can be enhanced from 58% to 129%. The effects of the key design parameters on the antenna impedance bandwidth are also investigated and discussed. Measured results for the reflection coefficient, far-field radiation patterns, radiation efficiency, gain, and group delay of the designed antenna over the UWB spectrum are presented and discussed. Measured data show good concordance with the numerical results. Also, the fidelity factor is calculated in both E-and H-plane by using CST Microwave Studio. The obtained results in both time-and frequency-domain indicate that the antenna is a good option for UWB applications.
This paper presents a technique to design a very small planar antenna for ultra-wideband (UWB) communication applications. To cover UWB frequency range by a small-size antenna, the ground plane influence on the antenna impedance bandwidth is suppressed at middle and higher frequencies. To accomplish this purpose, a rectangular and several stepped slots are etched on the conventional radiator. Also, a tuning stub is printed in the rectangular slot, and its length is optimized. This technique decreases current distribution on the ground plane at higher frequencies, and the impedance matching of the antenna is significantly influenced by the radiating patch. The antenna has a compact size of 25 × 25 × 1.6 mm 3. It can provide a wide impedance bandwidth from 2.8 to 15.4 GHz (|S 11 | < −10 dB) which covers the entire UWB spectrum (3.1-10.6 GHz). Two prototypes of the antenna were fabricated and measured. The impedance matching, group delay, fidelity factor, and the antenna radiation characteristics, including co-and cross-polarized far-field patterns and realized gain were analyzed with numerical simulation and experimental measurement. Measured data are in good agreement with the simulated ones. Based on the obtained frequency-and time-domain characteristics, the designed antenna is an excellent candidate for UWB wireless devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.