On the microstructure and mechanical properties of an Fe-10Ni-7Mn martensitic steel processed by high-pressure torsion, Materials Science & Engineering A,
The high-pressure torsion (HPT) process is a severe plastic deformation (SPD) technique which imposes exceptionally high strains to produce extremely small grain sizes in bulk materials. In this paper, the HPT process was carried out on an Fe-10Ni-7Mn (wt.%) martensitic steel up to 20 revolutions at a rotation speed of 1 rpm under a pressure of 6.0 GPa at room temperature. The effects of the HPT process on the microstructure evolution and mechanical properties of the alloy were investigated by X-ray diffraction (XRD) analysis, electron backscatter diffraction (EBSD), microhardness measurement and conventional tensile testing. The XRD analysis revealed no changes in the detected phases after deformation. A significant refinement in grain size from 200 m in the initial microstructure to around 230 nm after HPT was observed by EBSD. Although based on a rigid body assumption the imposed strain is linearly proportional to the distance from the center in HPT-processed disks, after 20 revolutions a uniform micro-hardness increment up to ~650 Hv was achieved. Moreover, the tensile strength of the alloy increased from ~800 MPa in the solution annealed condition to about 2300 MPa after the HPT process with a total tensile strain of 4%. Experimental results indicated that the HPT process leads to improvement of the tensile strength with a reasonable ductility due to the significant refinement of the microstructure.
Press hardening provides ultra-high strength steel components, typically boron steels, of complex geometries. In the process, the steel sheet is heated in a furnace to the austenitization temperature, transferred to the press, then simultaneously formed at high temperature and cooled in the die. Life limiting factors for the press hardening dies are mechanical fatigue, thermal fatigue, and wear. In the present case study two die segments were selected where critical damages were mechanical and thermal fatigue, respectively. The dies were made of a H13 type premium hot-work tool steel with complex heated die technology, die design integrating an advanced cooling system, for pressing automotive frame parts.
The first die failed due to mechanical loading with a crack initiated from the ejector pin area. The die design, the mechanical loads, the elevated temperature, and the tool steel crack resistance are main factors to consider. In the second die cracks initiated from an ejector pin hole, as well, due to thermal cycles causing alternating compressive and tensile stresses at the surface, which led to crack nucleation because of the accumulation of local plastic strain in the surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.