Dyspnea, 'hunger for air', and the urge to flee are the cardinal symptoms of respiratory-type panic attacks. Patients also show baseline respiratory abnormalities and a higher rate of comorbid and antecedent respiratory diseases. Panic attacks are also precipitated by both the infusion of 0.5 M sodium lactate and the inhalation of 5-7% carbon dioxide (CO2) in predisposed patients, but not in healthy volunteers nor patients without panic disorder. Further studies show that patients with panic are also hyper-responsive to hypoxia. These and other observations led Klein (1993) to suggest that clinical panic is the misfiring of a suffocation alarm system. In rats, cytotoxic hypoxia of chemoreceptor cells by intravenous injection of potassium cyanide (KCN) produces short-lasting flight behaviors reminiscent of panic attacks. KCN-induced flight behaviors are blocked both by denervation of chemoreceptor cells and lesion of dorsal periaqueductal gray matter, a likely substrate of panic. Herein, we show that KCN-evoked flight behaviors are also attenuated by both acute and chronic treatment with clonazepam (0.01-0.3 mg/kg, intraperitoneally (i.p.)) and fluoxetine (1-4 mg/kg/day, i.p. for 21 days), respectively. Attenuation of KCN-evoked panic-like behaviors by clinically-effective treatment with panicolytics adds fresh evidence to the false suffocation alarm theory of panic disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.