Web applications can be accessed through a variety of user agent configurations, in which the browser, platform, and device capabilities are not under the control of developers. In order to grant the compatibility of a web application in each environment, developers must manually inspect their web application in a wide variety of devices, platforms, and browsers. Web applications can be rendered inconsistently depending on the browser, the platform, and the device capabilities which are used. Furthermore, the devices’ different viewport widths impact the way web applications are rendered in them, in which elements can be resized and change their absolute positions in the display. These adaptation strategies must also be considered in automatic incompatibility detection approaches in the state of the art. Hence, we propose a classification approach for detecting Layout Cross-platform and Cross-browser incompatibilities, which considers the adaptation strategies used in responsive web applications. Our approach is an extension of previous Cross-browser incompatibility detection approaches and has the goal of reducing the cost associated with manual inspections in different devices, platforms, and browsers, by automatically detecting Layout incompatibilities in this scenario. The proposed approach classifies each DOM element which composes a web application as an incompatibility or not, based on its attributes, position, alignment, screenshot, and the viewport width of the browser. We report the results of an experiment conducted with 42 Responsive Web Applications, rendered in three devices (Apple iPhone SE, Apple iPhone 8 Plus, and Motorola Moto G4) and browsers (Google Chrome and Apple Safari). The results (with F-measure of 0.70) showed evidence which quantify the effectiveness of our classification approach, and it could be further enhanced for detecting Cross-platform and Cross-browser incompatibilities. Furthermore, in the experiment, our approach also performed better when compared to a former state-of-the-art classification technique for Cross-browser incompatibilities detection.