Time series are the important type of data in the world, and time series data mining is one of the most important subfields of data mining. In this paper we propose a model of temporal pattern discovery from multiple time series based on temporal logic. Firstly, multiple time series are transform to multiple event sequences, and then they are synthesized into one event sequence. Secondly, we generate the observation sequence to mining the temporal pattern and the rules based on the interval temporal logic. The algorithm is proposed to mining online frequent episodes and mining change of patterns on mass event sequences. Finally, efficiency of the model and the algorithm is proved through experiments.2008 International Symposium on Knowledge Acquisition and Modeling 978-0-7695-3488-6/08 $25.00
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.