Increasing cereal yield is needed to meet the projected increased demand for world food supply of about 70% by 2050. Sirius, a process-based model for wheat, was used to estimate yield potential for wheat ideotypes optimized for future climatic projections for ten wheat growing areas of Europe. It was predicted that the detrimental effect of drought stress on yield would be decreased due to enhanced tailoring of phenology to future weather patterns, and due to genetic improvements in the response of photosynthesis and green leaf duration to water shortage. Yield advances could be made through extending maturation and thereby improve resource capture and partitioning. However the model predicted an increase in frequency of heat stress at meiosis and anthesis. Controlled environment experiments quantify the effects of heat and drought at booting and flowering on grain numbers and potential grain size. A current adaptation of wheat to areas of Europe with hotter and drier summers is a quicker maturation which helps to escape from excessive stress, but results in lower yields. To increase yield potential and to respond to climate change, increased tolerance to heat and drought stress should remain priorities for the genetic improvement of wheat.
A 2-year experiment was conducted to ascertain the effects of exogenously applied plant growth regulators (PGR) on rice growth and yield attributes under high day (HDT) and high night temperature (HNT). Two rice cultivars (IR-64 and Huanghuazhan) were subjected to temperature treatments in controlled growth chambers and four different combinations of ascorbic acid (Vc), alpha-tocopherol (Ve), brassinosteroids (Br), methyl jasmonates (MeJA), and triazoles (Tr) were applied. High temperature severely affected rice morphology, and also reduced leaf area, above-, and below-ground biomass, photosynthesis, and water use efficiency, while increased the leaf water potential of both rice cultivars. Grain yield and its related attributes except number of panicles, were reduced under high temperature. The HDT posed more negative effects on rice physiological attributes, while HNT was more detrimental for grain formation and yield. The Huanghuazhan performed better than IR-64 under high temperature stress with better growth and higher grain yield. Exogenous application of PGRs was helpful in alleviating the adverse effects of high temperature. Among PGR combinations, the Vc+Ve+MejA+Br was the most effective treatment for both cultivars under high temperature stress. The highest grain production by Vc+Ve+MejA+Br treated plants was due to enhanced photosynthesis, spikelet fertility and grain filling, which compensated the adversities of high temperature stress. Taken together, these results will be of worth for further understanding the adaptation and survival mechanisms of rice to high temperature and will assist in developing heat-resistant rice germplasm in future.
Factorial pot experiments were conducted to compare the responses of GA-sensitive and GA-insensitive reduced height (Rht) alleles in wheat for susceptibility to heat and drought stress during booting and anthesis. Grain set (grains/spikelet) of near-isogenic lines (NILs) was assessed following three day transfers to controlled environments imposing day temperatures (t) from 20 to 40°C. Transfers were during booting and/or anthesis and pots maintained at field capacity (FC) or had water withheld. Logistic responses (y = c/1+e -b(t -m) ) described declining grain set with increasing t, and t 5 was that fitted to give a 5 % reduction in grain set. Averaged over NIL, t 5 for anthesis at FC was 31.7 AE 0.47°C (S.E.M., 26 d.f.). Drought at anthesis reduced t 5 by <2°C. Maintaining FC at booting conferred considerable resistance to high temperatures (t 5 = 33.9°C) but booting was particularly heat susceptible without water (t 5 = 26.5°C). In one background (cv. Mercia), for NILs varying at the Rht-D1 locus, there was progressive reduction in t 5 with dwarfing and reduced gibberellic acid (GA) sensitivity (Rht-D1a, tall, 32.7 AE 0.72; Rht-D1b, semi-dwarf, 29.5 AE 0.85; Rht-D1c, severe dwarf, 24.2 AE 0.72). This trend was not evident for the Rht-B1 locus or for Rht-D1b in an alternative background (Maris Widgeon). The GA-sensitive severe dwarf Rht12 was more heat tolerant (t 5 = 29.4 AE 0.72) than the similarly statured GA-insensitive Rht-D1c. The GA-sensitive, semidwarfing Rht8 conferred greater drought tolerance in one experiment. Despite the effects of Rht-D1 alleles in Mercia on stress tolerance, the inconsistency of the effects over background and locus led to the conclusion that semidwarfing with GA-insensitivity did not necessarily increase sensitivity to stress at booting and flowering. In comparison with effects of semidwarfing alleles, responses to heat stress are much more dramatically affected by water availability and the precise growth stage at which the stress is experienced by the plants.
The present study examined the effects of gibberellin semi-sensitive reduced height (Rht) alleles on wheat grain yield and quality under high temperature and drought stress during booting and anthesis stages. Near-isogenic lines (NILs) of winter wheat (Rht (tall), Rht-B1b, Rht-D1b, Rht-B1c, Rht-8c, Rht-D1c, Rht-12) having background of Mercia and Maris Widgeon cultivars were compared under variable temperatures (day/night: 20/12, 27/19, 30/22, 33/25, 36/28, and 39/31 °C) and irrigation regimes. Pots were transferred to controlled thermal conditions (Saxcil growth chamber) during booting and anthesis stages and were maintained at field capacity (FC) or had water withheld. High temperature (>30 °C) and drought stress for seven consecutive days during booting and anthesis stages reduced the grain yield, while increased nitrogen (N) and sulphur (S) concentrations. A 50 % reduction in grain yield was fitted to have occurred at 37.4 °C for well-watered plants and at 31.4 °C for drought-stressed plants. The N and S concentrations were higher for severe dwarfs, whereas no significant differences were observed between tall and semi-dwarfs in Mercia. In the taller background (Maris Widgeon), N and S concentrations were significantly higher compared with that in Mercia. In Mercia, the severe dwarf Rht-D1c had higher Hagberg falling number (HFN) and sodium dodecyl sulphate (SDS) sedimentation volume. In both backgrounds, semi-dwarfs and severe dwarfs had higher HFN. Moreover, the SDS sedimentation volumes in Maris Widgeon were also higher than that in Mercia. Greater adaptability and improved grain quality traits suggested that severe dwarf Rht alleles are better able to enhance tolerance to high temperature and drought stress in wheat.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.