Cereals are the main source of human food on our planet. The ever-increasing food demand, continuously changing environment, and diseases of cereal crops have made adequate production a challenging task for feeding the ever-increasing population. Plant breeders are striving their hardest to increase production by manipulating conventional breeding methods based on the biology of plants, either self-pollinating or cross-pollinating. However, traditional approaches take a decade, space, and inputs in order to make crosses and release improved varieties. Recent advancements in genome editing tools (GETs) have increased the possibility of precise and rapid genome editing. New GETs such as CRISPR/Cas9, CRISPR/Cpf1, prime editing, base editing, dCas9 epigenetic modification, and several other transgene-free genome editing approaches are available to fill the lacuna of selection cycles and limited genetic diversity. Over the last few years, these technologies have led to revolutionary developments and researchers have quickly attained remarkable achievements. However, GETs are associated with various bottlenecks that prevent the scaling development of new varieties that can be dealt with by integrating the GETs with the improved conventional breeding methods such as speed breeding, which would take plant breeding to the next level. In this review, we have summarized all these traditional, molecular, and integrated approaches to speed up the breeding procedure of cereals.
In recent years, extreme environmental cues such as abiotic stresses, including frequent droughts with irregular precipitation, salinity, metal contamination, and temperature fluctuations, have been escalating the damage to plants’ optimal productivity worldwide. Therefore, yield maintenance under extreme events needs improvement in multiple mechanisms that can minimize the influence of abiotic stresses. Polyamines (PAs) are pivotally necessary for a defensive purpose under adverse abiotic conditions, but their molecular interplay in this remains speculative. The PAs’ accretion is one of the most notable metabolic responses of plants under stress challenges. Recent studies reported the beneficial roles of PAs in plant development, including metabolic and physiological processes, unveiling their potential for inducing tolerance against adverse conditions. This review presents an overview of research about the most illustrious and remarkable achievements in strengthening plant tolerance to drought, salt, and temperature stresses by the exogenous application of PAs. The knowledge of underlying processes associated with stress tolerance and PA signaling pathways was also summarized, focusing on up-to-date evidence regarding the metabolic and physiological role of PAs with exogenous applications that protect plants under unfavorable climatic conditions. Conclusively, the literature proposes that PAs impart an imperative role in abiotic stress tolerance in plants. This implies potentially important feedback on PAs and plants’ stress tolerance under unfavorable cues.
It is expected that up to 2050, human population will be doubled. Agricultural researchers are striving their best to meet the food challenges. To get the higher yield, nitrogenous fertilizers use is also being increased. Nitrogenous fertilizers play vital roles in different plant’s growth and developmental processes. But, excessive use of nitrogen is no more beneficial to plants. Only 30 to 50% nitrogen use efficiency is recorded in plants, the remaining nitrogen is used by soil microbes, leached down in soil profile or volatilized. Different agronomical practices have been practiced and suggested for the general cultivation. Proper use of these agronomical practices can increase the crop yield and nitrogen use efficiency.
Conventional plant breeding methods exploit already existing genomic variation in plants to develop a variety in 8 to 10 years, which can decrease the genetic variability of the plant’s genome. The ever-increasing food demand for cereals crops cannot be met by traditional breeding methods. In order to increase food production in less time, there is a dire need to improve breeding methods. Several conventional and molecular breeding methods are being used to improve the crops traits. Molecular researchers have developed new genome editing tools like CRISPR/Cas9, CRISPR/Cpf1, prime editing, base editing, dcas9 epigenetic modification, and several other transgene-free genomes editing approaches. These genome editing tools can improve the desired traits precisely and efficiently. Moreover, a newly developed breeding method “Speed Breeding” has revolutionized the agriculture by shortening the crop cycle. It can produce 5-6 generations of cereals in a year. In this review, we have summarized all these conventional and molecular breeding approaches to improve cereal crops.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.