Adversarial training has been proven to be an effective technique for improving the adversarial robustness of models. However, there seems to be an inherent trade-off between optimizing the model for accuracy and robustness. To this end, we propose Adversarial Concurrent Training (ACT), which employs adversarial training in a collaborative learning framework whereby we train a robust model in conjunction with a natural model in a minimax game. ACT encourages the two models to align their feature space by using the task-specific decision boundaries and explore the input space more broadly. Furthermore, the natural model acts as a regularizer, enforcing priors on features that the robust model should learn. Our analyses on the behavior of the models show that ACT leads to a robust model with lower model complexity, higher information compression in the learned representations, and high posterior entropy solutions indicative of convergence to a flatter minima. We demonstrate the effectiveness of the proposed approach across different datasets and network architectures. On ImageNet, ACT achieves 68.20% standard accuracy and 44.29% robustness accuracy under a 100-iteration untargeted attack, improving upon the standard adversarial training method's 65.70% standard accuracy and 42.36% robustness.
Humans excel at continually learning from an ever-changing environment whereas it remains a challenge for deep neural networks which exhibit catastrophic forgetting. The complementary learning system (CLS) theory suggests that the interplay between rapid instance-based learning and slow structured learning in the brain is crucial for accumulating and retaining knowledge. Here, we propose CLS-ER, a novel dual memory experience replay (ER) method which maintains short-term and long-term semantic memories that interact with the episodic memory. Our method employs an effective replay mechanism whereby new knowledge is acquired while aligning the decision boundaries with the semantic memories. CLS-ER does not utilize the task boundaries or make any assumption about the distribution of the data which makes it versatile and suited for "general continual learning". Our approach achieves state-of-the-art performance on standard benchmarks as well as more realistic general continual learning settings. * Contributed equally.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.