Context
Blood-based analytes as indicators of pathological processes in Alzheimer's disease (AD).
Objective
Combined proteomic and neuroimaging approach to identify plasma proteins associated with AD pathology.
Design
Discovery-phase proteomic experiments to identify plasma proteins associated with correlates of AD pathology including evidence of atrophy using neuroimaging and more rapid clinical progression, followed by replication using quantitative immunoassay. Extension studies in older non-demented humans using 11C-PiB amyloid imaging and transgenic mice with amyloid pathology.
Setting
Multi-center European study, AddNeuroMed, and the Baltimore Longitudinal Study of Aging (BLSA) in United States.
Participants
AD patients, mild cognitive impairment (MCI) subjects and healthy controls with standardized clinical assessments and structural neuroimaging. Plasma samples from non-demented older BLSA participants with brain amyloid imaging by PET.
Main outcome measures
Association of plasma proteins with brain atrophy, disease severity and rate of clinical progression. Extension studies in man and transgenic mice tested association between plasma proteins and brain amyloid.
Results
Clusterin/apolipoprotein-J was associated with atrophy of the entorhinal cortex, baseline disease severity and rapid clinical progression in AD. Increased plasma concentration of clusterin was predictive of greater beta amyloid (Aβ) burden in the medial temporal lobe. Subjects with AD had increased clusterin mRNA in blood but there was no effect of SNPs in the gene encoding clusterin (CLU) with gene or protein expression. Finally, APP/PS1 transgenic mice showed increased plasma clusterin, age-dependent increase in brain clusterin and amyloid and clusterin co-localisation in plaques.
Conclusions
Clusterin/apolipoprotein-J is a known amyloid chaperone associated with Alzheimer's disease severity, pathology and progression. Increased plasma concentration of clusterin is also associated with greater burden of fibrillar Aβ in the brain. These results demonstrate an important role of clusterin in the pathogenesis of AD and suggest that alterations in amyloid chaperone proteins may be a biologically relevant peripheral signature of Alzheimer's disease.
Flavonoids, a group of dietary polyphenols have been shown to possess cognitive health benefits. Epidemiologic evidence suggests that they could play a role in risk reduction in dementia. Amyloid precursor protein processing and the subsequent generation of amyloid beta (Aβ) are central to the pathogenesis of Alzheimer's disease, as soluble, oligomeric Aβ is thought to be the toxic species driving disease progression. We undertook an in vitro screen to identify flavonoids with bioactivity at βγ-mediated amyloid precursor protein processing, which lead to identification of a number of flavonoids bioactive at 100 nM. Because of known bioavailability, we investigated the catechin family further and identified epigallocatechin and (−)-epicatechin as potent (nanomolar) inhibitors of amyloidogenic processing. Supporting this finding, we have shown reduced Aβ pathology and Aβ levels following short term, a 21-day oral delivery of (−)-epicatechin in 7-month-old TASTPM mice. Further, in vitro mechanistic studies suggest this is likely because of indirect BACE1 inhibition. Taken together, our results suggest that orally delivered (−)-epicatechin may be a potential prophylactic for Alzheimer's disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.