In this article, we study generalized fractional derivatives that contain kernels depending on a function on the space of absolute continuous functions. We generalize the Laplace transform in order to be applicable for the generalized fractional integrals and derivatives and apply this transform to solve some ordinary differential equations in the frame of the fractional derivatives under discussion.
In this manuscript, we define the generalized fractional derivative on AC n γ [a, b], the space of functions defined onWe present some of the properties of generalized fractional derivatives of these functions and then we define their Caputo version.
In this article, a qualitative analysis of the mathematical model of novel corona virus named COVID-19 under nonsingular derivative of fractional order is considered. The concerned model is composed of two compartments, namely, healthy and infected. Under the new nonsingular derivative, we, first of all, establish some sufficient conditions for existence and uniqueness of solution to the model under consideration. Because of the dynamics of the phenomenon when described by a mathematical model, its existence must be guaranteed. Therefore, via using the classical fixed point theory, we establish the required results. Also, we present the results of stability of Ulam’s type by using the tools of nonlinear analysis. For the semianalytical results, we extend the usual Laplace transform coupled with Adomian decomposition method to obtain the approximate solutions for the corresponding compartments of the considered model. Finally, in order to support our study, graphical interpretations are provided to illustrate the results by using some numerical values for the corresponding parameters of the model.
The primary goal of this study is to define the weighted fractional operators on some spaces. We first prove that the weighted integrals are bounded in certain spaces. Afterwards, we discuss the weighted fractional derivatives defined on absolute continuous-like spaces. At the end, we present a modified Laplace transform that can be applied perfectly to such operators.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.