The mitigation of the risks of passenger injuries when a vehicle is involved in a collision with a street pole shielded with a layer of tire-derived material (TDM) was assessed. This can effectively absorb a fraction of the total energy from a speeding vehicle. Since such tests are expensive to conduct experimentally, the study relies on using the Abaqus/Explicit FEA solver to accurately calculate the non-linear nature of this scenario. Two categories of this scenario were evaluated to understand the effect a shielded street pole has on the vehicle—and the total absorbed energies during frontal and corner collisions, which are typically the most common categories of such accidents to happen. Results show that at lower speeds, these reinforcements are least effective in absorbing some of the kinetic energy applied by the vehicle, with about 5% of the energy absorbed by the reinforcement. At higher speeds, however, the results show that the TDM reinforcement absorbs about 28% of kinetic energy, which can reduce injury of the vehicle occupants, as well as decrease the damage on poles. Results for this simulation also show that there is a critical thickness of TDM that can absorb these kinetic energies, after which further thicknesses results in energies being applied back to the vehicle, therefore negating any purpose to further increase TDM thicknesses.
The impact analysis of vehicle collision on street poles was investigated, as well as an assessment of which type of impact—frontal or corner—contributes to the most damages on both the car and the streetlamp. This work was accomplished using Abaqus/Explicit software to numerically simulate the crashes at three different velocities, 12, 17, and 22 m·s−1, and extract relations such as the energy models, the specific energy absorption (SEA) of the materials tested, and the impact forces. Two materials were used for the street pole: aluminum Al-6061 and ASTM A36 grade steel. Findings such as the influence of the SEA on the vehicle’s velocity, the relationship between the deformation of the street pole and the vehicle’s velocity, as well as the improvement of previously studied models by including damage parameters are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.