Given that hydroxyapatite (HA) biomaterials are highly efficient at adsorbing proadhesive proteins, we questioned whether functionalizing HA with RGD peptides would have any benefit. In this study, we implanted uncoated or RGD-coated HA disks into rat tibiae for 30 min to allow endogenous protein adsorption, and then evaluated mesenchymal stem cell (MSC) interactions with the retrieved disks. These experiments revealed that RGD, when presented in combination with adsorbed tibial proteins (including fibronectin, vitronectin and fibrinogen), has a markedly detrimental effect on MSC adhesion and survival. Moreover, analyses of HA disks implanted for 5 days showed that RGD significantly inhibits total bone formation as well as the amount of new bone directly contacting the implant perimeter. Thus, RGD, which is widely believed to promote cell/biomaterial interactions, has a negative effect on HA implant performance. Collectively these results suggest that, for biomaterials that are highly interactive with the tissue microenvironment, the ultimate effects of RGD will depend upon how signaling from this peptide integrates with endogenous processes such as protein adsorption.
Background: Ovarian adenocarcinoma is not generally discovered in patients until there has been widespread intraperitoneal dissemination, which is why ovarian cancer is the deadliest gynecologic malignancy. Though incompletely understood, the mechanism of peritoneal metastasis relies on primary tumor cells being able to detach themselves from the tumor, escape normal apoptotic pathways while free floating, and adhere to, and eventually invade through, the peritoneal surface. Our laboratory has previously shown that the Golgi glycosyltransferase, ST6Gal-I, mediates the hypersialylation of β 1 integrins in colon adenocarcinoma, which leads to a more metastatic tumor cell phenotype. Interestingly, ST6Gal-I mRNA is known to be upregulated in metastatic ovarian cancer, therefore the goal of the present study was to determine whether ST6Gal-I confers a similarly aggressive phenotype to ovarian tumor cells.
Ultra-smooth nanostructured diamond (USND) can be applied to greatly increase the wear resistance of orthopaedic implants over conventional designs. Herein we describe surface modification techniques and cytocompatibility studies performed on this new material. We report that hydrogen (H)-terminated USND surfaces supported robust mesenchymal stem cell (MSC) adhesion and survival, while oxygen- (O) and fluorine (F)-terminated surfaces resisted cell adhesion, indicating that USND can be modified to either promote or prevent cell/biomaterial interactions. Given the favorable cell response to H-terminated USND, this material was further compared with two commonly used biocompatible metals, titanium alloy (Ti-6Al-4V) and cobalt chrome (CoCrMo). MSC adhesion and proliferation were significantly improved on USND compared with CoCrMo, although cell adhesion was greatest on Ti-6Al-4V. Comparable amounts of the pro-adhesive protein, fibronectin, were deposited from serum on the three substrates. Finally, MSCs were induced to undergo osteoblastic differentiation on the three materials, and deposition of a mineralized matrix was quantified. Similar amounts of mineral were deposited onto USND and CoCrMo, whereas mineral deposition was slightly higher on Ti-6Al-4V. When coupled with recently published wear studies, these in vitro results suggest that USND has the potential to reduce debris particle release from orthopaedic implants without compromising osseointegration.
Here we report that myeloid cells differentiating along the monocyte/macrophage lineage down-regulate the ST6Gal-I sialyltransferase via a protein kinase C/Ras/ERK signaling cascade. In consequence, the 1 integrin subunit becomes hyposialylated, which stimulates the ligand binding activity of ␣51 fibronectin receptors. Pharmacologic inhibitors of protein kinase C, Ras, and MEK, but not phosphoinositide 3-kinase, block ST6Gal-I down-regulation, integrin hyposialylation, and fibronectin binding. In contrast, constitutively active MEK stimulates these same events, indicating that ERK is both a necessary and sufficient activator of hyposialylationdependent integrin activation. Consistent with the enhanced activity of hyposialylated cell surface integrins, purified ␣51 receptors bind fibronectin more strongly upon enzymatic desialylation, an effect completely reversed by resialylation of these integrins with recombinant ST6Gal-I. Finally, we have mapped the N-glycosylation sites on the 1 integrin to better understand the potential effects of differential sialylation on integrin structure/function. Notably, there are three N-glycosylated sites within the 1 I-like domain, a region that plays a crucial role in ligand binding. Our collective results suggest that variant sialylation, induced by a specific signaling cascade, mediates the sustained increase in cell adhesiveness associated with monocytic differentiation.The U937 and THP-1 cell lines represent well accepted model systems for studying myeloid differentiation along the monocyte/macrophage lineage. Following treatment with phorbol myristate acetate (PMA), 4 these cells exhibit phenotypic changes that are characteristic of cell differentiation, including increased respiratory burst activity, enhanced phagocytotic capability, and markedly elevated cell adhesiveness to extracellular matrix ligands such as fibronectin. In vivo, the increased adhesiveness of monocytes/macrophages contributes to the extravasation of cells from the vasculature as well as tethering of cells within inflamed tissues.Differentiating myeloid cells bind to fibronectin through the integrin family of cell adhesion receptors, including the ␣51 integrin species. The molecular mechanisms underlying PMA-dependent cell adhesion have not been well defined, although it has been reported that PMA increases the synthesis of both ␣5 and 1 integrin subunits (1-4). However, myeloid cells (U937 and THP-1) express an abundant amount of ␣51 in the absence of PMA treatment, and yet these cells bind very poorly to fibronectin. This suggests that myeloid ␣51 receptors are normally in an inactive state and that increased expression alone cannot account for the dramatically increased fibronectin binding induced by PMA.In our prior study (5) we observed that PMA stimulated a rapid but transient increase in fibronectin binding that was likely due to the activation of integrins already present on the cell surface. However, following this initial transient event there was a second phase of elevated fibronect...
The ST6Gal-I glycosyltransferase, which adds α2-6-linked sialic acids to glycoproteins, is overexpressed in colon adenocarcinoma, and enzyme activity is correlated with tumor cell invasiveness. Previously we reported that forced expression of oncogenic ras in HD3 colonocytes causes upregulation of ST6Gal-I, leading to increased α2-6 sialylation of β1 integrins. To determine whether ras-induced sialylation is involved in promoting the tumor cell phenotype, we used shRNA to downregulate ST6Gal-I in ras-expressors, and then monitored integrin-dependent responses. Here we show that forced ST6Gal-I downregulation, leading to diminished α2-6 sialylation of integrins, inhibits cell adhesion to collagen-I, a β1 ligand. Correspondingly, collagen binding is reduced by enzymatic removal of cell surface sialic acids from ras-expressors with high ST6Gal-I levels (i.e., no shRNA). Cells with forced ST6Gal-I downregulation also exhibit decreased migration on collagen-I and diminished invasion through Matrigel. Importantly, GD25 cells, which lack β1 integrins (and ST6Gal-I), do not demonstrate differential invasiveness when forced to express ST6Gal-I, suggesting that the effects of variant sialylation are mediated specifically by β1 integrins. The observation that cell migration and invasion can be blocked in oncogenic ras-expressing cells by forcing ST6Gal-I downregulation implicates differential sialylation as an important ras effector, and also suggests that ST6Gal-I is a promising therapeutic target.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.