Background: Hearing loss is one of the most common developmental disorders identifiable at birth with its prevalence increasing throughout school years. However, early detection programs are mostly unavailable in low- and middle-income countries (LMICs) where more than 80% of children with hearing loss reside.Objective: This study investigated the feasibility of a smartphone-based hearing screening program for preschool children operated by community healthcare workers (CHWs) in community-based early childhood development (ECD) centers.Method: Five CHWs were trained to map ECD centers and conduct smartphone-based hearing screenings within a poor community in South Africa over a 12-month period. The hearScreenTM smartphone application employed automated test protocols operating on low-cost smartphones. A cloud-based data management and referral function allowed for remote monitoring for surveillance and follow up.Results: 6424 children (3–6 years) were screened for hearing loss with an overall referral rate of 24.9%. Only 39.4% of these children attended their follow-up appointment at a local clinic, of whom 40.5% referred on their second screening. Logistic regression analysis indicated that age, gender and environmental noise levels (1 kHz) had a significant effect on referral rates (p < 0.05). The quality index reflecting test operator test quality increased during the first few months of testing.Conclusion: Smartphone-based hearing screening can be used by CHWs to detect unidentified children affected by hearing loss within ECD centers. Active noise monitoring, quality indices of test operators and cloud-based data management and referral features of the hearScreenTM application allows for the asynchronous management of hearing screenings and follow-ups.
Automated audiometry provides an accurate measure of hearing threshold, but validation data are still limited for (1) automated bone conduction audiometry; (2) automated audiometry in children and difficult-to-test populations and; (3) different types and degrees of hearing loss.
This study explored the effect of visual feedback on classroom noise levels, using a SoundEar II device that monitors noise levels in real time with feedback on intensity levels using a lighting system. During phase one, noise levels from three classrooms in the same school were measured over 36 h of classroom activities. For phase two, six teachers from two schools completed a questionnaire describing their experiences using the device. Visual feedback resulted in a 1.4-dBA reduction in the average noise levels. Classroom noise levels were above 70 dBA for 33% of the time in the baseline period compared to 24% in the intervention period with visual feedback provided on noise levels. Teacher perceptions indicated that visual feedback was beneficial to classroom noise levels and positively influenced the behaviour of learners. Visual feedback reduced overall classroom noise and can provide a cost-effective, noninvasive tool to create a more enabling classroom environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.