The hybrid halide perovskite CH3NH3PbI3 has enabled solar cells to reach an efficiency of about 20%, demonstrating a pace for improvements with no precedents in the solar energy arena. Despite such explosive progress, the microscopic origin behind the success of such material is still debated, with the role played by the organic cations in the light-harvesting process remaining unclear. Here van der Waals-corrected density functional theory calculations reveal that the orientation of the organic molecules plays a fundamental role in determining the material electronic properties. For instance, if CH3NH3 orients along a (011)-like direction, the PbI6 octahedral cage will distort and the bandgap will become indirect. Our results suggest that molecular rotations, with the consequent dynamical change of the band structure, might be at the origin of the slow carrier recombination and the superior conversion efficiency of CH3NH3PbI3.
Organic-inorganic lead-halide perovskites have received a revival of interest in the past few years as a promising class of materials for photovoltaic applications. Despite recent extensive research, the role of cations in defining the high photovoltaic performance of these materials is not fully understood. Here, we conduct nonadiabatic molecular dynamics simulations to study and compare nonradiative hot carrier relaxation in three lead-halide perovskite materials: CHNHPbI, HC(NH)PbI, and CsPbI. It is found that the relaxation of hot carriers to the band edges occurs on the ultrafast time scale and displays a strong quantitative dependence on the nature of the cations. The obtained results are explained in terms of electron-phonon couplings, which are strongly affected by the atomic displacements in the Pb-I framework triggered by the cation dynamics.
In this review, we present and discussed the main trends in photovoltaics with emphasize on the conversion efficiency limits. The theoretical limits of various photovoltaics device concepts are presented and analyzed using a flexible detailed balance model where more discussion emphasize is toward the losses. Also, few lessons from nature and other fields to improve the conversion efficiency in photovoltaics are presented and discussed as well. From photosynthesis, the perfect exciton transport in photosynthetic complexes can be utilized for PVs. Also, we present some lessons learned from other fields like recombination suppression by quantum coherence. For example, the coupling in photosynthetic reaction centers is used to suppress recombination in photocells.
In the past few years, the efficiency of solar cells based on hybrid organic-inorganic perovskites has exceeded the level needed for commercialization. However, existing perovskites solar cells (PSCs) suffer from several intrinsic instabilities, which prevent them from reaching industrial maturity, and stabilizing PSCs has become a critically important problem. Here we propose to stabilize PSCs chemically by strengthening the interactions between the organic cation and inorganic anion of the perovskite framework. In particular, we show that replacing the methylammonium cation with alternative protonated cations allows an increase in the stability of the perovskite by forming strong hydrogen bonds with the halide anions. This interaction also provides opportunities for tuning the electronic states near the bandgap. These mechanisms should have a universal character in different hybrid organic-inorganic framework materials that are widely used.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.