Industrial waste has been rapidly increased day by day because of the fast-growing population which results environmental pollutions. It has been recommended that the disposal of industrial waste would be greatly reduced if it could be incorporated in concrete production. In cement concrete technology, there are many possibilities to use waste materials either as cement replacement or aggregate in concrete production. Two major industrials waste are glass and marble waste. The basic objective of this investigation is to examine the characteristics of concrete waste glass (WG) as binding material in proportions 10%, 20% and 30% by weight of cement. Furthermore, to obtain high strength concrete, waste marble in proportion of 40%, 50% and 60% by weight cement as fine aggregate were used as a filler material to fill the voids between concrete ingredients. Fresh properties were evaluated through slump cone test while mechanical performance was evaluated through compressive strength and split tensile strength which were performed after 7 days, 28 days and 56 days curing. Results show that, workability of concrete decreased with incorporation of waste glass and marble waste. Furthermore, mechanical performance improved considerably up 20% and 50% substitution of waste glass and waste marble respectively. Statistical approach of Response Surface Methodology (RSM) was used optimize both waste materials in concrete. Results indicate better agreement between statistical and experimental results.
Fly ash (FA) is a residual from thermal industries that has been effectively utilized in the production of FA-based geopolymer concrete (FGPC). To avoid time-consuming and costly experimental procedures, soft computing techniques, namely, random forest regression (RFR) and gene expression programming (GEP), are used in this study to develop an empirical model for the prediction of compressive strength of FGPC. A widespread, reliable, and consistent database of compressive strength of FGPC is set up via a comprehensive literature review. The database consists of 298 compressive strength data points. The influential parameters that are considered as input variables for modelling are curing temperature T , curing time t , age of the specimen A , the molarity of NaOH solution M , percent SiO2 solids to water ratio % S / W in sodium silicate (Na2SiO3) solution, percent volume of total aggregate ( % A G ), fine aggregate to the total aggregate ratio F / A G , sodium oxide (Na2O) to water ratio N / W in Na2SiO3 solution, alkali or activator to the FA ratio A L / F A , Na2SiO3 to NaOH ratio N s / N o , percent plasticizer ( % P ), and extra water added as percent FA E W % . RFR is an ensemble algorithm and gives outburst performance as compared to GEP. However, GEP proposed an empirical expression that can be used to estimate the compressive strength of FGPC. The accuracy and performance of both models are evaluated via statistical error checks, and external validation is considered. The proposed GEP equation is used for sensitivity analysis and parametric study and then compared with nonlinear and linear regression expressions.
Supervised machine learning and its algorithm is an emerging trend for the prediction of mechanical properties of concrete. This study uses an ensemble random forest (RF) and gene expression programming (GEP) algorithm for the compressive strength prediction of high strength concrete. The parameters include cement content, coarse aggregate to fine aggregate ratio, water, and superplasticizer. Moreover, statistical analyses like MAE, RSE, and RRMSE are used to evaluate the performance of models. The RF ensemble model outbursts in performance as it uses a weak base learner decision tree and gives an adamant determination of coefficient R2 = 0.96 with fewer errors. The GEP algorithm depicts a good response in between actual values and prediction values with an empirical relation. An external statistical check is also applied on RF and GEP models to validate the variables with data points. Artificial neural networks (ANNs) and decision tree (DT) are also used on a given data sample and comparison is made with the aforementioned models. Permutation features using python are done on the variables to give an influential parameter. The machine learning algorithm reveals a strong correlation between targets and predicts with less statistical measures showing the accuracy of the entire model.
The experimental design of high-strength concrete (HSC) requires deep analysis to get the target strength. In this study, machine learning approaches and artificial intelligence python-based approaches have been utilized to predict the mechanical behaviour of HSC. The data to be used in the modelling consist of several input parameters such as cement, water, fine aggregate, and coarse aggregate in combination with a superplasticizer. Empirical relation with mathematical expression has been proposed using engineering programming. The efficiency of the models is assessed by statistical analysis with the error by using MAE, RRMSE, RSE, and comparisons were made between regression models. Moreover, variable intensity and correlation have shown that deep learning can be used to know the exact amount of materials in civil engineering rather than doing experimental work. The expression tree, as well as normalization of the graph, depicts significant accuracy between target and output values. The results reveal that machine learning proposed adamant accuracy and has elucidated performance in the prediction aspect.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.