Image segmentation is considered to be one of the critical tasks in hyperspectral remote sensing image processing. Recently, convolutional neural network (CNN) has established itself as a powerful model in segmentation and classification by demonstrating excellent performances. The use of a graphical model such as a conditional random field (CRF) contributes further in capturing contextual information and thus improving the segmentation performance. In this paper, we propose a method to segment hyperspectral images by considering both spectral and spatial information via a combined framework consisting of CNN and CRF. We use multiple spectral cubes to learn deep features using CNN, and then formulate deep CRF with CNN-based unary and pairwise potential functions to effectively extract the semantic correlations between patches consisting of three-dimensional data cubes. Furthermore, we introduce a deep deconvolution network that improves the segmentation masks. We also introduced a new dataset and experimented our proposed method on it along with several widely adopted benchmark datasets to evaluate the effectiveness of our method. By comparing our results with those from several state-of-the-art models, we show the promising potential of our method.
This paper proposes a method that uses both spectral and spatial information to segment remote sensing hyperspectral images. After a hyperspectral image is over-segmented into superpixels, a deep Convolutional Neural Network (CNN) is used to perform superpixel-level labelling. To further delineate objects from a hyperspectral scene, this paper attempts to combine the properties of CNN and Conditional Random Field (CRF). A mean-field approximation algorithm for CRF inference is used and formulated with Gaussian pairwise potentials as Recurrent Neural Network. This combined network is then plugged into the CNN which leads to a deep network that has robust characteristics of both CNN and CRF. Preliminary results suggest the usefulness of this framework to a promising extent.
Image classification is one of the critical tasks in hyperspectral remote sensing. In recent years, significant improvement have been achieved by various classification methods. However, mixed spectral responses from different ground materials still create confusions in complex scenes. In this regard, unmixing approaches are being successfully carried out to decompose mixed pixels into a collection of spectral signatures. Considering the usefulness of these techniques, we propose to utilize the unmixing results as an input to classifiers for better classification accuracy. We propose a novel band group based structure preserving nonnegative matrix factorization (NMF) method to estimate the individual spectral responses from different materials within different ranges of wavelengths. Then we train a convolutional neural network (CNN) with the unmixing results to generate powerful features and eventually classify the data. This method is evaluated on a new dataset and compared with several state-of-the-art models, which shows the promising potential of our method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.