Fabrication of polymeric micro/nanofibers with controllable size, density, orientation, and composition is required for their translation into functional devices and materials. Electrospinning (ES) is a frequently used fiber fabrication technique, where ES parameters such as the applied electric field strength, architecture of the setup, and solution composition are manipulated to control the fiber properties. Here, we present a bench-top method for fabricating miniaturized, integrated, and highly tunable ES setups based on shrinkable polymer substrates. We show that using a combination of numerical modeling and controlling different parameters in the ES setup, including the spinneret to collector distance, and spinneret and collector designs, it is possible to tune the density, alignment, and orientation of electrospun fibers. In this way, we have produced 300-600 nm wide poly(ethylene oxide) fibers arranged as nonwoven mats on planar electrodes, aligned fibers on electrode edges, and individual suspended fibers spanning gaps between collector electrodes. The ability to rapidly prototype ES setups should enable us to study the effects of spinneret-collector configurations on fiber morphology, distribution, and conformation and to aid in the development of miniaturized ES setups designed to serve specific applications.
Polymeric thin films and nanostructured composites with excellent electrical properties are required for the development of advanced optoelectronic devices, flexible electronics, wearable sensors, and tissue engineering scaffolds. Because most polymers available for fabrication are insulating, one of the biggest challenges remains the preparation of inexpensive polymer composites with good electrical conductivity. Among the nanomaterials used to enhance composite performance, single walled carbon nanotubes (SWNTs) are ideal due to their unique physical and electrical properties. Yet, a barrier to their widespread application is that they do not readily disperse in solvents traditionally used for polymer processing. In this study, we employed supramolecular functionalization of SWNTs with a conjugated polyelectrolyte as a simple approach to produce stable aqueous nanotube suspensions, that could be effortlessly blended with the polymer poly(ethyleneoxide) (PEO). The homogeneous SWNT:PEO mixtures were used to fabricate conductive thin films and nanofibers with improved conductivities through drop casting and electrospinning. The physical characterization of electrospun nanofibers through Raman spectroscopy and SEM revealed that the SWNTs were uniformly incorporated throughout the composites. The electrical characterization of SWNT:PEO thin films allowed us to assess their conductivity and establish a percolation threshold of 0.1 wt% SWNT. Similarly, measurement of the nanofiber conductivity showed that the electrospinning process improved the contact between nanotube complexes, resulting in conductivities in the S m(-1) range with much lower weight loading of SWNTs than their thin film counterparts. The methods reported for the fabrication of conductive nanofibers are simple, inexpensive, and enable SWNT processing in aqueous solutions, and offer great potential for nanofiber use in applications involving flexible electronics, sensing devices, and tissue engineering scaffolds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.