Real estate needs to improve its adoption of disruptive technologies to move from traditional to smart real estate (SRE). This study reviews the adoption of disruptive technologies in real estate. It covers the applications of nine such technologies, hereby referred to as the Big9. These are: drones, the internet of things (IoT), clouds, software as a service (SaaS), big data, 3D scanning, wearable technologies, virtual and augmented realities (VR and AR), and artificial intelligence (AI) and robotics. The Big9 are examined in terms of their application to real estate and how they can furnish consumers with the kind of information that can avert regrets. The review is based on 213 published articles. The compiled results show the state of each technology’s practice and usage in real estate. This review also surveys dissemination mechanisms, including smartphone technology, websites and social media-based online platforms, as well as the core components of SRE: sustainability, innovative technology and user centredness. It identifies four key real estate stakeholders—consumers, agents and associations, government and regulatory authorities, and complementary industries—and their needs, such as buying or selling property, profits, taxes, business and/or other factors. Interactions between these stakeholders are highlighted, and the specific needs that various technologies address are tabulated in the form of a what, who and how analysis to highlight the impact that the technologies have on key stakeholders. Finally, stakeholder needs as identified in the previous steps are matched theoretically with six extensions of the traditionally accepted technology adoption model (TAM), paving the way for a smoother transition to technology-based benefits for consumers. The findings pertinent to the Big9 technologies in the form of opportunities, potential losses and exploitation levels (OPLEL) analyses highlight the potential utilisation of each technology for addressing consumers’ needs and minimizing their regrets. Additionally, the tabulated findings in the form of what, how and who links the Big9 technologies to core consumers’ needs and provides a list of resources needed to ensure proper information dissemination to the stakeholders. Such high-quality information can bridge the gap between real estate consumers and other stakeholders and raise the state of the industry to a level where its consumers have fewer or no regrets. The study, being the first to explore real estate technologies, is limited by the number of research publications on the SRE technologies that has been compensated through incorporation of online reports.
Big data is the concept of enormous amounts of data being generated daily in different fields due to the increased use of technology and internet sources. Despite the various advancements and the hopes of better understanding, big data management and analysis remain a challenge, calling for more rigorous and detailed research, as well as the identifications of methods and ways in which big data could be tackled and put to good use. The existing research lacks in discussing and evaluating the pertinent tools and technologies to analyze big data in an efficient manner which calls for a comprehensive and holistic analysis of the published articles to summarize the concept of big data and see field-specific applications. To address this gap and keep a recent focus, research articles published in last decade, belonging to top-tier and high-impact journals, were retrieved using the search engines of Google Scholar, Scopus, and Web of Science that were narrowed down to a set of 139 relevant research articles. Different analyses were conducted on the retrieved papers including bibliometric analysis, keywords analysis, big data search trends, and authors’ names, countries, and affiliated institutes contributing the most to the field of big data. The comparative analyses show that, conceptually, big data lies at the intersection of the storage, statistics, technology, and research fields and emerged as an amalgam of these four fields with interlinked aspects such as data hosting and computing, data management, data refining, data patterns, and machine learning. The results further show that major characteristics of big data can be summarized using the seven Vs, which include variety, volume, variability, value, visualization, veracity, and velocity. Furthermore, the existing methods for big data analysis, their shortcomings, and the possible directions were also explored that could be taken for harnessing technology to ensure data analysis tools could be upgraded to be fast and efficient. The major challenges in handling big data include efficient storage, retrieval, analysis, and visualization of the large heterogeneous data, which can be tackled through authentication such as Kerberos and encrypted files, logging of attacks, secure communication through Secure Sockets Layer (SSL) and Transport Layer Security (TLS), data imputation, building learning models, dividing computations into sub-tasks, checkpoint applications for recursive tasks, and using Solid State Drives (SDD) and Phase Change Material (PCM) for storage. In terms of frameworks for big data management, two frameworks exist including Hadoop and Apache Spark, which must be used simultaneously to capture the holistic essence of the data and make the analyses meaningful, swift, and speedy. Further field-specific applications of big data in two promising and integrated fields, i.e., smart real estate and disaster management, were investigated, and a framework for field-specific applications, as well as a merger of the two areas through big data, was highlighted. The proposed frameworks show that big data can tackle the ever-present issues of customer regrets related to poor quality of information or lack of information in smart real estate to increase the customer satisfaction using an intermediate organization that can process and keep a check on the data being provided to the customers by the sellers and real estate managers. Similarly, for disaster and its risk management, data from social media, drones, multimedia, and search engines can be used to tackle natural disasters such as floods, bushfires, and earthquakes, as well as plan emergency responses. In addition, a merger framework for smart real estate and disaster risk management show that big data generated from the smart real estate in the form of occupant data, facilities management, and building integration and maintenance can be shared with the disaster risk management and emergency response teams to help prevent, prepare, respond to, or recover from the disasters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.