A key step in the activation of interferon-inducible antiviral kinase PKR involves differential binding of viral double-stranded RNA (dsRNA) to its two structurally similar N-terminal dsRNA binding motifs, dsRBM1 and dsRBM2. We show here, using NMR spectroscopy, that dsRBM1 with higher RNA binding activity exhibits signi®cant motional¯exibility on a millisecond timescale as compared with dsRBM2 with lower RNA binding activity. We further show that dsRBM2, but not dsRBM1, speci®cally interacts with the C-terminal kinase domain. These results suggest a dynamically tuned dsRNA binding mechanism for PKR activation, where motionally more¯exible dsRBM1 anchors to dsRNA, thereby inducing a cooperative RNA binding for dsRBM2 to expose the kinase domain.
The Saccharomyces cerevisiae Rsm22 protein (Sc-Rsm22), encoded by the nuclear RSM22 (systematic name YKL155c) gene, is a distant homologue of Rsm22 from Trypanosoma brucei (Tb-Rsm22) and METTL17 from mouse (Mm-METTL17). All three proteins have been shown to be associated with mitochondrial gene expression, and Sc-Rsm22 has been documented to be essential for mitochondrial respiration. The Sc-Rsm22 protein comprises a polypeptide of molecular weight 72.2 kDa that is predicted to harbor an N-terminal mitochondrial targeting sequence. The precise physiological function of Rsm22-family proteins is unknown, and no structural information has been available for Sc-Rsm22 to date. In this study, Sc-Rsm22 was expressed and purified in monomeric and dimeric forms, their folding was confirmed by circular-dichroism analyses and their low-resolution structures were determined using a small-angle X-ray scattering (SAXS) approach. The solution structure of the monomeric form of Sc-Rsm22 revealed an elongated three-domain arrangement, which differs from the shape of Tb-Rsm22 in its complex with the mitochondrial small ribosomal subunit in T. brucei (PDB entry 6sg9). A bioinformatic analysis revealed that the core domain in the middle (Leu117–Asp462 in Sc-Rsm22) resembles the corresponding region in Tb-Rsm22, including a Rossmann-like methyltransferase fold followed by a zinc-finger-like structure. The latter structure is not present in this position in other methyltransferases and is therefore a unique structural motif for this family. The first half of the C-terminal domain is likely to form an OB-fold, which is typically found in RNA-binding proteins and is also seen in the Tb-Rsm22 structure. In contrast, the N-terminal domain of Sc-Rsm22 is predicted to be fully α-helical and shares no sequence similarity with other family members. Functional studies demonstrated that the monomeric variant of Sc-Rsm22 methylates mitochondrial tRNAs in vitro. These data suggest that Sc-Rsm22 is a new and unique member of the RNA methyltransferases that is important for mitochondrial protein synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.