Polyvinylidene fluoride (PVDF)/g-C3N4/Chitosan thin film membranes were prepared for removal of Direct Blue 14 dye (an anionic dye) from aqueous solutions. PVDF/g-C3N4/Chitosan membranes were prepared by immersing of PVDF/g-C3N4 membrane in solution containing various concentrations of chitosan. The resulting membranes were characterized by XRD, FESEM, TEM and AFM. Also, pure water flux, salt rejection, water content, antifouling properties of prepared membranes were investigated. The resulting demonstrate that pure water flux was decreased by increasing of chitosan concentration, while water content, antifouling properties and salt rejection were increased. It is found that chitosan has major impact on the membrane structural properties due to transform of the PVDF membrane into hydrophilic ones. It is reported that maximum 93% rejection of Direct Blue 14 was obtained by PVDF/g-C3N4/Chitosan membrane. Compared to the PVDF/g-C3N4 membrane, the experimental results showed that PVDF/g-C3N4/Chitosan membranes demonstrated high potential mainly due to greater hydrophilicity and further minimizing membrane fouling.
The objective of this study is to investigate Differential Thermal Analysis (DTA) and thermal behavior prediction of Water Expandable Polystyrene (WEPS) using Artificial Neural Network (ANN). In this procedure spherical PS beads containing small water droplets are applied. These droplets are capable to expand the PS matrix while heating above the Tg. Also, the effect of Sodium Chloride (NaCl) on water distribution into Water Expandable Polystyrene (WEPS) beads would be investigated. The ANN model was developed to predict DTA data in different temperatures. The results reveal that there is a good agreement between predicted thermal behavior and the actual values.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.