Pregnancy is dependent upon the endometrium acquiring a receptive phenotype that facilitates apposition, adhesion and invasion of a developmentally competent embryo. Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry of mid-secretory endometrial biopsies revealed a 28 kDa protein peak that discriminated highly between samples obtained from women with recurrent implantation failure and fertile controls. Subsequent tandem mass spectroscopy unambiguously identified this peak as apolipoprotein A-I (apoA-I), a potent anti-inflammatory molecule. Total endometrial apoA-I levels were, however, comparable between the study and control group. Moreover, endometrial apoA-I mRNA expression was not cycle-dependent although there was partial loss of apoA-I immunoreactivity in luminal and glandular epithelium in mid-secretory compared with proliferative endometrial samples. Because of its putative anti-implantation properties, we examined whether endometrial apoA-I expression is regulated by embryonic signals. Human chorionic gonadotrophin (hCG) strongly inhibited apoA-I expression in differentiating explant cultures but not when established from eutopic endometrium from patients with endometriosis. Pelvic endometriosis was associated with elevated apoA-I mRNA levels, increased secretion by differentiating eutopic endometrial explant cultures and lack of hCG-dependent down-regulation. To corroborate these observations, we examined endometrial apoA-I expression and its regulation by hCG in a non-human primate model of endometriosis. As in humans, hCG strongly inhibited endometrial apoA-I mRNA expression in disease-free baboons, but this response was entirely lost upon induction of pelvic endometriosis. Together, these observations indicate that perturbations in endometrial apoA-I expression, modification or regulation by paracrine embryonic signals play a major role in implantation failure and infertility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.