Abstract:The preparation of calcium oxide CaO from chicken eggshell has been carried out by decomposition at various temperatures 600, 700, 800, 900, and 1000 o C. The metal oxide CaO was characterized using XRD. Furthermore, the optimum temperature for preparation of CaO was determined based on the XRD pattern, then the characterization of CaO was extended using FT-IR spectrophotometer and BET analysis. The results show that the optimum temperature for preparation of CaO from chicken eggshell is 900 o C with peak of 2Ө at 32.
In this study, bentonite modified by zirconium nitride (ZrN) and zirconium phosphide (ZrP) catalysts was studied in the hydrocracking of crude palm oil to biofuels.
Emissions from gasoline are one of the contributors to air pollution. Diisopropyl ether (DIPE) is an alternative oxygenate additive that can improve gasoline quality, minimizing CO and hydrocarbon gas emissions during combustion. However, there are very few studies on the use of pillared bentonite-based catalysts for DIPE production. This study aims to produce DIPE via dehydration of isopropyl alcohol using a molybdenum phosphide pillared bentonite (MoP-Bentonite) catalyst. The effect of Mo6+ metal concentration on the catalytic activity of isopropyl alcohol dehydration was also investigated. The catalyst that gives the highest DIPE yield will be analyzed by X-ray Diffraction (XRD), Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX), Gas Sorption Analyzer (GSA), and total acidity using the gravimetric method. In addition, the dehydration product will be analyzed by Gas Chromatography-Mass Spectroscopy (GC-MS). The results showed that MoP has been successfully pillared into bentonite and showed an increase in surface area, acidity, and catalytic activity. The highest yield of DIPE was obtained using a 4 mEq/g MoP-Bentonite catalyst with a DIPE yield of 64.5%.
The study on cellulose modification with acetic acid to cellulose-acetate has been carried out. Cellulose is extracted from the kepok banana peel (Musa paradisiaca L.). Modified cellulose acetate was characterized by FTIR spectroscopy and SEM-EDS. Cellulose acetate to removal of methylene blue with adsorption parameter include initial concentration (10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 mg/L), pH solution (3, 4, 5, 6, 7, and 8) and contact time (15, 30, 45, 60, 75, and 90 minutes). The peak of FTIR cellulose acetate obtained by functional groups -OH, C-H, C=O, and C-O esters. The morphology of cellulose-acetate has a more homogeneous than cellulose. Adsorption of cellulose-acetate on methylene blue optimum at an initial concentration of 90 mg/L, pH of solution 6, and contact time of 30 minutes. The adsorption kinetics corresponds to pseudo-second order and adsorption equilibrium corresponds to Langmuir isotherms with adsorption capacity of 42.107 mg/g.
NiFe2O4 nanoparticles had been successfully synthesized by solution combustion method using urea fuel (organic precursor). The synthesized NiFe2O4 were characterized by X-ray diffraction (XRD), Scanning electron microscopy-Electron Dispersive X-ray Spectroscopy (SEM-EDs), Transmission Electron Microscopy (TEM), Fourier Transform Infra-Red (FTIR), Vibrating Sample Magnetometer (VSM), UV-Vis Diffuse Reflectance Spectroscopy (UV-Vis DRS), and Point of Zero Charge (pHpzc). NiFe2O4 nanoparticles irradiated with visible light were employed to degrade Congo red dye with the following variable: solution pH (3–8), H2O2 concentration (0.5–3 mM), and Congo red concentration (100–600 mg/L). XRD analysis results showed that the NiFe2O4 nanoparticles had a cubic spinel structure. The particle sizes are in the range of 10–40 nm. The magnetic properties of NiFe2O4 nanoparticles determined using VSM showed a magnetization saturation value of 47.32 emu/g. UV-Vis DRS analysis indicated that NiFe2O4 nanoparticles had an optical band gap of 1.97 eV. The success of synthesis was also proven by the EDS analysis results, which showed that the synthesized NiFe2O4 nanoparticles composed of Ni, Fe, and O elements. The removal efficiency of Congo red dye was 96.80% at the following optimum conditions: solution pH of 5.0, H2O2 concentration of 2 mM, Congo red dye concentration of 100 mg/L, and contact time of 60 min. The study of the photodegradation kinetics follows a pseudo-first order reaction with a rate constant value of 0.0853 min−1. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.