AbstractAn odd-quadratic Leibniz superalgebra is a (left or right) Leibniz superalgebra with an odd, supersymmetric, non-degenerate and invariant bilinear form. In this paper, we prove that a left (resp. right) Leibniz superalgebra that carries this structure is symmetric (meaning that it is simultaneously a left and a right Leibniz superalgebra). Moreover, we show that any non-abelian (left or right) Leibniz superalgebra
does not possess simultaneously a quadratic and an odd-quadratic structure. Further, we obtain an inductive description of odd-quadratic Leibniz superalgebras using the procedure of generalized odd double extension and we reduce the study of this class of Leibniz superalgebras to that of odd-quadratic Lie superalgebras. Finally, several non-trivial examples of odd-quadratic Leibniz superalgebras are included.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.