In the present work, a previously developed neural network approach for analyzing spherical indentation experiments is applied to prestressed specimens to determine the effect of residual stresses on the identified stress–strain curves. Within this scope, a comparison to other measurement errors has been made, which are caused by surface preparation and anisotropy of the material. To validate the experimental and analysis approach, the effect of compressive and tensile prestresses was also simulated using a three-dimensional finite element model. The material investigated is a rolled 2024 T351, which is widely used for manufacturing airplanes. It is shown that the existing neural network approach is able to determine the stress–strain behavior in agreement with that obtained from tensile tests. The method is robust against most error sources, such as surface roughness, coarse grain structure, and anisotropy, if a sufficient number of experiments are available. The most important influencing factor can be the residual stress causing errors up to 20% in the identified stress–strain curves.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.