We demonstrate that functionalized pyrene derivatives effectively stabilize single- and few-layer graphene flakes in aqueous dispersions. The graphene/stabilizer yield obtained by this method is exceptionally high relative to conventional nanomaterial stabilizers such as surfactants or polymers. The mechanism of stabilization by pyrene derivatives is investigated by studying the effects of various parameters on dispersed graphene concentration and stability; these parameters include stabilizer concentration, initial graphite concentration, solution pH, and type and number of functional groups and counterions. The effectiveness of the pyrene derivatives is pH-tunable, as measured by zeta potential, and is also a function of the number of functional groups, the electronegativity of the functional group, the counterion, the relative polarity between stabilizer and solvent, and the distance from the functional group to the basal plane. Even if the dispersion is destabilized by extreme pH or lyophilization, the graphene does not aggregate because the stabilizer remains adsorbed on the surface. These dispersions also show promise for applications in graphene/polymer nanocomposites (examined in this paper), organic solar cells, conductive films, and inkjet-printed electronic devices.
Single-Walled Carbon Nanohorns (SWCNHs) are a unique carbon-based nanomaterial with promising application in different fields including, medicine, genetic engineering and horticulture. Here, we investigated the biological response of six crop species (barley, corn, rice, soybean, switchgrass, tomato) and tobacco cell culture to the exposure of SWCNHs. We found that SWCNHs can activate seed germination of selected crops and enhance growth of different organs of corn, tomato, rice and soybean. At cellular level, growth of tobacco cells was increased in response to exposure of SWCNHs (78% increase compared to control). Uptake of SWCNHs by exposed crops and tobacco cells was confirmed by transmission electron microscopy (TEM) and quantified by microwave induced heating (MIH) technique. At genetic level, SWCNHs were able to affect expression of a number of tomato genes that are involved in stress responses, cellular responses and metabolic processes. We have concluded that SWCNHs can be used as plant growth regulators and have the potential for plant-related applications.
High‐strength conductive pristine graphene/epoxy composites are prepared by two simple processing methods – freeze dry/mixing and solution processing. PVP‐stabilized graphene is aggregation‐resistant and allows for excellent dispersion in both the resin and final composite, as confirmed by optical microscopy and SEM images. The superior dispersion quality results in excellent nanofiller/matrix load transfer, with a 38% increase in strength and a 37% improvement in modulus for 0.46 vol% graphene loading. The composites have a very low electrical percolation threshold of 0.088 vol%. Despite the effectiveness of both methods, the freeze‐drying method is more promising and versatile enough to be used for graphene dispersion in a wide range of other composite precursors.
Recent developments in the exfoliation, dispersion, and processing of pristine graphene (i.e., non-oxidized graphene) are described. General metrics are outlined that can be used to assess the quality and processability of various "graphene" products, as well as metrics that determine the potential for industrial scale-up. The pristine graphene production process is categorized from a chemical engineering point of view with three key steps: i) pretreatment, ii) exfoliation, and iii) separation. How pristine graphene colloidal stability is distinct from the exfoliation step and is dependent upon graphene interactions with solvents and dispersants are extensively reviewed. Finally, the challenges and opportunities of using pristine graphene as nanofillers in polymer composites, as well as as building blocks for macrostructure assemblies are summarized in the context of large-scale production.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.