Aminoacyl-tRNA synthetases catalyze the attachment of specific amino acids to cognate tRNAs in a two-step process that is critical for the faithful translation of genetic information. During the first chemical step of tRNA aminoacylation, noncognate amino acids that are smaller than or isosteric with the cognate substrate can be misactivated. Thus, to maintain high accuracy during protein translation, some synthetases have evolved an editing mechanism. Previously, we showed that class II Escherichia coli proline-tRNA synthetase (ProRS) is capable of (1) weakly misactivating Ala, (2) hydrolyzing the misactivated Ala-AMP in a reaction known as pretransfer editing, and (3) deacylating a mischarged Ala-tRNA(Pro) variant via a post-transfer editing pathway. In contrast to most systems where an editing function has been established, pretransfer editing by E. coli ProRS occurs in a tRNA-independent fashion. However, neither the pre- nor the post-transfer editing active site(s) has been identified. Sequence analyses revealed that most prokaryotic ProRSs possess a large insertion domain (INS) between class II conserved motifs 2 and 3. The function of the approximately 180-amino acid INS in E. coli ProRS is the subject of this investigation. Alignment-guided Ala scanning mutagenesis was carried out to test conserved amino acid residues present in the INS for their role in pre- and post-transfer editing. Our biochemical data and modeling studies suggest that the prokaryotic INS plays a critical role in editing and that this activity resides in a domain that is functionally and structurally distinct from the aminoacylation active site.
Aminoacyl-tRNA synthetases are responsible for activating specific amino acids and transferring them onto cognate tRNA molecules. Due to the similarity in many amino acid side chains, certain synthetases misactivate non-cognate amino acids to an extent that would be detrimental to protein synthesis if left uncorrected. To ensure accurate translation of the genetic code, some synthetases therefore utilize editing mechanisms to hydrolyze non-cognate products. Previously class II Escherichia coli proline-tRNA synthetase (ProRS) was shown to exhibit pre-and post-transfer editing activity, hydrolyzing a misactivated alanine-adenylate (Ala-AMP) and a mischarged Ala-
Aminoacyl-tRNA synthetases catalyze the attachment of cognate amino acids to specific tRNA molecules. To prevent potential errors in protein synthesis caused by misactivation of noncognate amino acids, some synthetases have evolved editing mechanisms to hydrolyze misactivated amino acids (pre-transfer editing) or misacylated tRNAs (post-transfer editing). In the case of post-transfer editing, synthetases employ a separate editing domain that is distinct from the site of amino acid activation, and the mechanism is believed to involve shuttling of the flexible CCA-3 end of the tRNA from the synthetic active site to the site of hydrolysis. The mechanism of pre-transfer editing is less well understood, and in most cases, the exact site of pre-transfer editing has not been conclusively identified. Here, we probe the pre-transfer editing activity of class II prolyl-tRNA synthetases from five species representing all three kingdoms of life. To locate the site of pre-transfer editing, truncation mutants were constructed by deleting the insertion domain characteristic of bacterial prolyl-tRNA synthetase species, which is the site of posttransfer editing, or the N-or C-terminal extension domains of eukaryotic and archaeal enzymes. In addition, the pre-transfer editing mechanism of Escherichia coli prolyl-tRNA synthetase was probed in detail. These studies show that a separate editing domain is not required for pre-transfer editing by prolyl-tRNA synthetase. The aminoacylation active site plays a significant role in preserving the fidelity of translation by acting as a filter that selectively releases non-cognate adenylates into solution, while protecting the cognate adenylate from hydrolysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.