: Lack of adequate sleep is a major source of many harmful diseases related to heart, brain, psychological changes, high blood pressure, diabetes, weight gain etc. The 40 to 50 % of the world’s population is suffering from poor or inadequate sleep. Insomnia is a sleep disorder in which individual complaint of difficulties in starting/continuing sleep at least four weeks regularly. It is estimated that 70% of the heart diseases are generated during insomnia sleep disorder. The main objective of this study to determine the all work conducted on insomnia detection and to make a database. We used two procedures including network visualization techniques on two databases including PubMed and Web of Science to complete this study. We found 169 and 36 previous publications of insomnia detection in the PubMed and the Web of Science databases, respectively. We analyzed 10 datasets, 2 databases, 21 genes, and 23 publications with 30105 subjects of insomnia detection. This work has revealed the future way and gap so far directed on insomnia detection and has also tried to provide objectives for the future work to be proficient in a scientific and significant manner.
Stress has become a dangerous health problem in our life, especially in student education journey. Accordingly, previous methods have been conducted to detect mental stress based on biological and biochemical e fects. Moreover, hormones, physiological e fects, and skin temperature have been extensively used for stress detection. However, based on the recent literature, biological, biochemical, and physiological-based methods have shown inconsistent findings, which are initiated due to hormones' instability. Therefore, it is crucial to study stress using di ferent mechanisms such as Electroencephalogram (EEG) signals. In this research study, the frontal lobes EEG spectrum analysis is applied to detect mental stress. Initially, we apply a Fast Fourier Transform (FFT) as a feature extraction stage to measure all bands' power density for the frontal lobe. A ter that, we used two type of classifications such as subject wise and mix (mental stress vs. control) using Support Vector Machine (SVM) and Naive Bayes (NB) machine learning classifiers. Our obtained results of the average subject wise classification showed that the proposed technique has better accuracy (98.21%). Moreover, this technique has low complexity, high accuracy, simple and easy to use, no over fitting, and it could be used as a real-time and continuous monitoring technique for medical applications.
In the modern world, wearable smart devices are continuously used to monitor people’s health. This study aims to develop an automatic mental stress detection system for researchers based on Electrocardiogram (ECG) signals from smart T-shirts using machine learning classifiers. We used 20 subjects, including 10 from mental stress (after twelve hours of continuous work in the laboratory) and 10 from normal (after completing the sleep or without any work). We also applied three scoring techniques: Chalder Fatigue Scale (CFS), Specific Fatigue Scale (SFS), Depression, Anxiety, and Stress Scale (DASS), to confirm the mental stress. The total duration of ECG recording was 1800 min, including 1200 min during mental stress and 600 min during normal. We calculated two types of features, such as demographic and extracted by ECG signal. In addition, we used Decision Tree (DT), Naive Bayes (NB), Random Forest (RF), and Logistic Regression (LR) to classify the intra-subject (mental stress and normal) and inter-subject classification. The DT leave-one-out model has better performance in terms of recall (93.30%), specificity (96.70%), precision (94.40%), accuracy (93.30%), and F1 (93.50%) in the intra-subject classification. Additionally, The classification accuracy of the system in classifying inter-subjects is 94.10% when using a DT classifier. However, our findings suggest that the wearable smart T-shirt based on the DT classifier may be used in big data applications and health monitoring. Mental stress can lead to mitochondrial dysfunction, oxidative stress, blood pressure, cardiovascular disease, and various health problems. Therefore, real-time ECG signals help assess cardiovascular and related risk factors in the initial stage based on machine learning techniques.
Bruxism is a sleep disorder in which the patient clinches and gnashes their teeth. Bruxism detection using traditional methods is time-consuming, cumbersome, and expensive. Therefore, an automatic tool to detect this disorder will alleviate the doctor workload and give valuable help to patients. In this paper, we targeted this goal and designed an automatic method to detect bruxism from the physiological signals using a novel hybrid classifier. We began with data collection. Then, we performed the analysis of the physiological signals and the estimation of the power spectral density. After that, we designed the novel hybrid classifier to enable the detection of bruxism based on these data. The classification of the subjects into “healthy” or “bruxism” from the electroencephalogram channel (C4-A1) obtained a maximum specificity of 92% and an accuracy of 94%. Besides, the classification of the sleep stages such as the wake (w) stage and rapid eye movement (REM) stage from the electrocardiogram channel (ECG1-ECG2) obtained a maximum specificity of 86% and an accuracy of 95%. The combined bruxism classification and the sleep stages classification from the electroencephalogram channel (C4-P4) obtained a maximum specificity of 90% and an accuracy of 97%. The results show that more accurate bruxism detection is achieved by exploiting the electroencephalogram signal (C4-P4). The present work can be applied for home monitoring systems for bruxism detection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.