Photodynamic antimicrobial chemotherapy based on photosensitizers activated by illumination is limited by poor penetration of visible light through skin and tissues. In order to overcome this problem, Rose Bengal was excited in the dark by 28 kHz ultrasound and was applied for inactivation of bacteria. It is demonstrated, for the first time, that the sonodynamic technique is effective for eradication of Gram-positive Staphylococcus aureus and Gram-negative Escherichia coli. The net sonodynamic effect was calculated as a 3-4 log10 reduction in bacteria concentration, depending on the cell and the Rose Bengal concentration and the treatment time. Sonodynamic treatment may become a novel and effective form of antimicrobial therapy and can be used for low-temperature sterilization of medical instruments and surgical accessories.
Photodynamic antimicrobial chemotherapy is an alternative method for killing bacterial cells in view of the increasing problem of multi-antibiotic resistance. We examined the effect of three water-soluble photosensitizers (PhS): methylene blue (MB), neutral red (NR) and rose bengal (RB) on Gram-positive and Gram-negative bacteria. We compared the efficacy of PhS in their free form and encapsulated in liposomal formulations against various bacterial strains, and determined conditions for the effective use of encapsulated PhS. We found that all three PhS were able to eradicate the Gram-positive microbes Staphylococcus aureus and Sarcina lutea; and MB and RB were effective against St. epidermidis. In the case of the Gram-negative species, MB and RB were cytotoxic against the Shigella flexneri, NR-inactivated Escherichia coli and Salmonella para B, and BR was effective in killing Pseudomonas aeruginosa. None of the examined PhS showed activity against Klebsiella pneumoniae. MB and NR enclosed in liposomes gave a stronger antimicrobial effect than free PhS for all tested prokaryotes, whereas encapsulation of RB led to no increase in its activity. We suggest that encapsulation of PhS can increase the photoinactivation of bacteria.
The increasing resistance of bacteria to antibiotics is a serious problem, caused in part by excessive and improper use of these drugs. One alternative to traditional antibiotic therapy is photodynamic antimicrobial chemotherapy (PACT) which is based on the use of a photosensitizer (PS), activated by illumination with visible light. The poor penetration of visible light through the skin limits the application of PACT to the treatment of skin infections or the use of invasive procedures. To overcome this problem we report the exploitation of light emitted as a result of the chemiluminescent reaction of luminol to excite the PS and we call this process chemiluminescent photodynamic antimicrobial therapy (CPAT). We studied the effect of free and liposome-encapsulated PS (methylene blue or toluidine blue) on bacteria under excitation by either white external light or chemiluminescence emitted by free or liposome-enclosed luminol. PACT showed slightly better performance that CPAT for free and encapsulated PS for both types of bacteria. CPAT resulted in a three log suppression of Staphylococcus aureus and two log suppression of Escherichia coli growth. The use of CPAT may prove to be a novel and more effective form of antimicrobial therapy, particularly for internal infections not easily accessible to traditional PACT.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.