Alternative splicing is widely acknowledged to be a crucial regulator of gene expression and is a key contributor to both normal developmental processes and disease states. While cost-effective and accurate for quantification, short-read RNA-seq lacks the ability to resolve full-length transcript isoforms despite increasingly sophisticated computational methods. Long-read sequencing platforms such as Pacific Biosciences (PacBio) and Oxford Nanopore (ONT) bypass the transcript reconstruction challenges of short reads. Here we introduce TALON, the ENCODE4 pipeline for platform-independent analysis of long-read transcriptomes. We apply TALON to the GM12878 cell line and show that while both PacBio and ONT technologies perform well at full-transcript discovery and quantification, each displayed distinct technical artifacts. We further apply TALON to mouse hippocampus and cortex transcriptomes and find that 422 genes found in these regions have more reads associated with novel isoforms than with annotated ones. We demonstrate that TALON is a capable of tracking both known and novel transcript models as well as their expression levels across datasets for both simple studies and in larger projects. These properties will enable TALON users to move beyond the limitations of short-read data to perform isoform discovery and quantification in a uniform manner on existing and future long-read platforms.
With increased usage of long-read sequencing technologies to perform transcriptome analyses, there becomes a greater need to evaluate different methodologies including library preparation, sequencing platform, and computational analysis tools. Here, we report the study design of a community effort called the Long-read RNA-Seq Genome Annotation Assessment Project (LRGASP) Consortium, whose goals are characterizing the strengths and remaining challenges in using long-read approaches to identify and quantify the transcriptomes of both model and non-model organisms. The LRGASP organizers have generated cDNA and direct RNA datasets in human, mouse, and manatee samples using different protocols followed by sequencing on Illumina, Pacific Biosciences, and Oxford Nanopore Technologies platforms. Participants will use the provided data to submit predictions for three challenges: transcript isoform detection with a high-quality genome, transcript isoform quantification, and de novo transcript isoform identification. Evaluators from different institutions will determine which pipelines have the highest accuracy for a variety of metrics using benchmarks that include spike-in synthetic transcripts, simulated data, and a set of undisclosed, manually curated transcripts by GENCODE. We also describe plans for experimental validation of predictions that are platform-specific and computational tool-specific. We believe that a community effort to evaluate long-read RNA-seq methods will help move the field toward a better consensus on the best approaches to use for transcriptome analyses.
Biological systems are immensely complex, organized into a multi-scale hierarchy of functional units based on tightly-regulated interactions between distinct molecules, cells, organs, and organisms. While experimental methods enable transcriptome-wide measurements across millions of cells, the most ubiquitous bioinformatic tools do not support systems-level analysis. Here we present hdWGCNA, a comprehensive framework for analyzing co-expression networks in high dimensional transcriptomics data such as single-cell and spatial RNA-seq. hdWGCNA provides built-in functions for network inference, gene module identification, functional gene enrichment analysis, statistical tests for network reproducibility, and data visualization. In addition to conventional single-cell RNA-seq, hdWGCNA is capable of performing isoform-level network analysis using long-read single-cell data. We showcase hdWGCNA using publicly available single-cell datasets from Autism spectrum disorder and Alzheimer's disease brain samples, identifying disease-relevant co-expression network modules in specific cell populations. hdWGCNA is directly compatible with Seurat, a widely-used R package for single-cell and spatial transcriptomics analysis, and we demonstrate the scalability of hdWGCNA by analyzing a dataset containing nearly one million cells.
The rise in throughput and quality of long-read sequencing should allow unambiguous identification of full-length transcript isoforms. However, its application to single-cell RNA-seq has been limited by throughput and expense. Here we develop and characterize long-read Split-seq (LR-Split-seq), which uses combinatorial barcoding to sequence single cells with long reads. Applied to the C2C12 myogenic system, LR-split-seq associates isoforms to cell types with relative economy and design flexibility. We find widespread evidence of changing isoform expression during differentiation including alternative transcription start sites (TSS) and/or alternative internal exon usage. LR-Split-seq provides an affordable method for identifying cluster-specific isoforms in single cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.