In this work, we study an ill-posed problem involving two time variables. Using a modified quasi-boundary value method, we perturb the final conditions to form an approximate non-local problem. We show that the approximate problems are well posed and we prove some convergence results.
The existence and uniqueness of the strong solution for a multitime evolution equation with nonlocal initial conditions are proved. The proof is essentially based on a priori estimates and on the density of the range of the operator generated by the considered problem.
This paper discusses the inverse problem of determining an unknown source in a second order differential equation from measured final data. This problem is ill-posed; that is, the solution (if it exists) does not depend continuously on the data. In order to solve the considered problem, an iterative method is proposed. Using this method a regularized solution is constructed and an a priori error estimate between the exact solution and its regularized approximation is obtained. Moreover, numerical results are presented to illustrate the accuracy and efficiency of this method.
This paper deals with the problem of determining an unknown source and an unknown initial condition in a abstract final value parabolic problem. This problem is ill-posed in the sense that the solutions do not depend continuously on the data. To solve the considered problem a modified Tikhonov regularization method is proposed. Using this method regularized solutions are constructed and under boundary conditions assumptions, convergence estimates between the exact solutions and their regularized approximations are obtained. Moreover numerical results are presented to illustrate the accuracy and efficiency of the proposed method.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.