In the present paper, we introduce a non-polynomial quadratic spline method for solving third-order boundary value problems. Third-order singularly perturbed boundary value problems occur frequently in many areas of applied sciences such as solid mechanics, quantum mechanics, chemical reactor theory, Newtonian fluid mechanics, optimal control, convection-diffusion processes, hydrodynamics, aerodynamics, etc. These problems have various important applications in fluid dynamics. The procedure involves a reduction of a third-order partial differential equation to a first-order ordinary differential equation. Truncation errors are given. The unconditional stability of the method is analysed by the Von-Neumann stability analysis. The developed method is tested with an illustrated example, and the results are compared with other methods from the literature, which shows the applicability and feasibility of the presented method. Furthermore, a graphical comparison between analytical and approximate solutions is also shown for the illustrated example.
This paper deals with the boundary control problem of the unforced generalized Burgers-Huxley equation with high order nonlinearity when the spatial domain is [0, 1]. We show that this type of equations are globally exponential stable in L 2 [0, 1] under zero Dirichlet boundary conditions. We use an adaptive nonlinear boundary controller to show the convergence of the solution to the trivial solution and to show that it achieves global asymptotic stability in time. We introduce numerical simulation for the controlled equation using the Adomian decomposition method (ADM) in order to illustrate the performance of the controller.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.